Search results for "electron transfer"

showing 10 items of 282 documents

Efficient photoinduced electron transfer in a porphyrin tripod-fullerene supramolecular complex via pi-pi interactions in nonpolar media.

2010

A novel porphyrin tripod (TPZn(3)) was synthesized via "click chemistry". Three porphyrin moieties of TPZn(3) are geometrically close and linked by a flexible linker. The electron-transfer oxidation of TPZn(3) results in intramolecular pi-dimer formation between porphyrin moieties as indicated by electrochemical, vis-NIR, and ESR measurements. The cyclic voltammogram of TPZn(3) exhibited stepwise one-electron oxidation processes of three porphyrin moieties in the range from 0.58 to 0.73 V (vs SCE in CH(2)Cl(2)). When TPZn(3) was oxidized by tris(2,2'-bipyridyl)-ruthenium(III) ([Ru(bpy)(3)](3+)), the oxidized species (TPZn(3))(n+) (0n/= 3) exhibited a charge resonance band in the NIR region …

dyadFullerenePorphyrinsMacromolecular SubstancesPhotochemistrySupramolecular chemistrycharge-separated state010402 general chemistryPhotochemistry01 natural sciencesBiochemistryCatalysisPhotoinduced electron transferchemistry.chemical_compoundColloid and Surface Chemistry[ CHIM.ORGA ] Chemical Sciences/Organic chemistryMoleculeComputingMilieux_MISCELLANEOUSMolecular Structure[CHIM.ORGA]Chemical Sciences/Organic chemistry010405 organic chemistryTripod (photography)reaction center mimicryGeneral ChemistryPorphyrin0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryZincchemistryIntramolecular forceclick chemistry[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryClick chemistryQuantum TheoryFullerenesporphyrinOxidation-ReductionJournal of the American Chemical Society
researchProduct

Real-time observation of the charge transfer to solvent dynamics

2013

Intermolecular electron-transfer reactions have a crucial role in biology, solution chemistry and electrochemistry. The first step of such reactions is the expulsion of the electron to the solvent, whose mechanism is determined by the structure and dynamical response of the latter. Here we visualize the electron transfer to water using ultrafast fluorescence spectroscopy with polychromatic detection from the ultraviolet to the visible region, upon photo-excitation of the so-called charge transfer to solvent states of aqueous iodide. The initial emission is short lived (similar to 60 fs) and it relaxes to a broad distribution of lower-energy charge transfer to solvent states upon rearrangeme…

electron transfer ultrafast fluorescence charge-transfer-to-solvent solvation homogeneity.Physics::Biological PhysicsMultidisciplinaryMaterials scienceAqueous solutionSettore FIS/01 - Fisica SperimentaleGeneral Physics and AstronomyHalideCharge (physics)General ChemistryElectron620 EngineeringGeneral Biochemistry Genetics and Molecular BiologyCondensed Matter::Soft Condensed MatterSolventElectron transferChemical physicsScientific methodPhysics::Chemical PhysicsSolvent effectsSettore CHIM/02 - Chimica FisicaNature Communications
researchProduct

Influence of Surface-Related Phenomena on Mechanism, Selectivity, and Conversion of TiO2 -Induced Photocatalytic Reactions

2018

Heterogeneous photocatalysis is the result of an inextricable connection of several factors differently contributing to the overall process. Photon absorption is the “sine qua non” condition for the reaction to occur. In fact, photons can be considered as immaterial reactants, and all of the phenomena related to the interaction of light–matter play a prominent role. However, other factors contribute in a concerted way to address the reaction, so that the relative contribution of each of them is often difficult to evaluate. In this framework, the present paper highlights some aspects of the interaction of TiO 2 surface-adsorbate species that could be underestimated and their influence on the…

energy transferChemistrySine qua nonGeneral Chemical Engineering02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesElectron transferphotocatalysiGeneral EnergyAdsorptionwater dynamicsChemical physicsMechanism (philosophy)PhotocatalysisEnvironmental ChemistryGeneral Materials SciencetitaniumSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologySelectivityChemSusChem
researchProduct

Optical and electrical properties of oriented thin films of oligomer containing betaine-type moiety in side chain

2005

Non-linear optical and electrical properties of polymer films obtained by dipole orientation of active units are reported. Novel polar oligomer with N-(indan-1,3-dion-2-yl)pyridinium betaine (IPB) as a side group is studied. Orientation of polar groups in oligomer thin films causes an increase of the photo-induced change of surface potential on irradiation in the region of photo-induced electron transfer (PIET) where the IPB group exhibits a reversible change of the value and sign of the dipole moment. At longer wavelengths, the value of the surface potential of the oligomer may be determined by transport of photogenerated charge carriers.

genetic structuresStereochemistryInstitut für Physik und AstronomieCondensed Matter PhysicsOligomerElectronic Optical and Magnetic MaterialsDipoleCrystallographychemistry.chemical_compoundElectron transferBetainechemistrySide chainMoietyPyridiniumsense organsPendant group
researchProduct

Pressure- and temperature-induced valence tautomeric interconversion in a o-dioxolene adduct of a cobalt-tetraazamacrocycle complex

2001

An electronic switch at the molecular level has been realized by using a class of ionic compounds of the formula [Co(L)(diox)]Y (L = tetraazamacrocyclic ligand, Y = mononegative anion). Such compounds undergo temperature- and pressure-induced intramolecular one-electron transfer equilibria. The transition temperature of interconversion varies with the nature of the counterions Y (Y = PF6, BPh4, I). Surprisingly the effect of the anion on the transition temperature is not only governed by its volume but also by its coulombic interaction.

inorganic chemicalschemistry.chemical_classificationQuantitative Biology::BiomoleculesValence (chemistry)Transition temperatureOrganic ChemistryIonic bondingGeneral ChemistryPhotochemistryTautomerCatalysisAdductElectron transferCrystallographychemistryIntramolecular forceCondensed Matter::Strongly Correlated ElectronsPhysics::Chemical PhysicsCounterion
researchProduct

ORR Activity and Stability of Co-N/C Catalysts Based on Silicon Carbide Derived Carbon and the Impact of Loading in Acidic Media

2018

This work was supported by the EU through the European Regional Development Fund under projects TK141 “Advanced materials and high-technology devices for energy recuperation systems” (2014-2020.4.01.15-0011), NAMUR ”Nanomaterials - research and applications” (3.2.0304.12-0397) and by the Estonian institutional research grant No. IUT20-13.

inorganic chemicalschemistry.chemical_element02 engineering and technology010402 general chemistryElectrochemistry01 natural sciences7. Clean energyCatalysisElectron transferchemistry.chemical_compoundX-ray photoelectron spectroscopy:NATURAL SCIENCES:Physics [Research Subject Categories]Materials ChemistryElectrochemistrySilicon carbideheterocyclic compoundsRenewable Energy Sustainability and the EnvironmentChemistryorganic chemicals021001 nanoscience & nanotechnologyCondensed Matter PhysicsNitrogen0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical engineeringDegradation (geology)0210 nano-technologyCarbonJournal of The Electrochemical Society
researchProduct

Carbon Dioxide Activation and Reaction Induced by Electron Transfer at an Oxide-Metal Interface

2015

A model system has been created to shuttle electrons through a metal-insulator-metal (MIM) structure to induce the formation of a CO2 anion radical from adsorbed gas-phase carbon dioxide that subsequently reacts to form an oxalate species. The process is completely reversible, and thus allows the elementary steps involved to be studied at the atomic level. The oxalate species at the MIM interface have been identified locally by scanning tunneling microscopy, chemically by IR spectroscopy, and their formation verified by density functional calculations.

oxalateta114Inorganic chemistryOxidecarbon dioxideInfrared spectroscopychemistry.chemical_elementGeneral Chemistryelectron transferOxygenmetal-insulator-metal structureCatalysisOxalateIonlaw.inventionMetalElectron transferchemistry.chemical_compoundchemistrylawvisual_artvisual_art.visual_art_mediumScanning tunneling microscopeta116oxygenAngewandte Chemie International Edition
researchProduct

Ultrafast Interface Charge Separation in Carbon Nanodot-Nanotube Hybrids

2021

Carbon dots are an emerging family of zero-dimensional nanocarbons behaving as tunable light harvesters and photoactivated charge donors. Coupling them to carbon nanotubes, which are well-known electron acceptors with excellent charge transport capabilities, is very promising for several applications. Here, we first devised a route to achieve the stable electrostatic binding of carbon dots to multi- or single-walled carbon nanotubes, as confirmed by several experimental observations. The photoluminescence of carbon dots is strongly quenched when they contact either semiconductive or conductive nanotubes, indicating a strong electronic coupling to both. Theoretical simulations predict a favo…

pump probe spectroscopyNanotubeMaterials scienceCarbon nanotubeschemistry.chemical_elementCarbon nanotubeCarbon nanodotsPhotoinduced electron transferlaw.inventionCondensed Matter::Materials ScienceElectron transferlawUltrafast laser spectroscopyGeneral Materials Sciencecarbon nanodotsNATURAL sciences & mathematicsCarbon nanohybridschemistry.chemical_classificationcarbon nanotubesbusiness.industryElectron acceptorCondensed Matter::Mesoscopic Systems and Quantum Hall EffectPump probe spectroscopyUltrafast electron transferultrafast electron transferchemistrycarbon nanohybridsOptoelectronicsddc:500NanodotbusinessCarbonResearch Article
researchProduct

Synthesis, Electrochemistry, and Photophysics of Aza-BODIPY Porphyrin Dyes

2016

International audience; The synthesis of dyad and triad aza-BODIPY-porphyrin systems in two steps starting from an aryl-substituted aza-BODIPY chromophore is described. The properties of the resulting aza-BODIPY-porphyrin conjugates have been extensively investigated by means of electrochemistry, spectroelectrochemistry, and absorption/emission spectroscopy. Fluorescence measurements have revealed a dramatic loss of luminescence intensity, mainly due to competitive energy transfer and photoinduced electron transfer involving charge separation followed by recombination.

resonance energy-transferporphyrinoidstetraarylazadipyrromethenes010402 general chemistryPhotochemistryElectrochemistry01 natural sciences7. Clean energy[ CHIM ] Chemical SciencesCatalysisFluorescence spectroscopyPhotoinduced electron transfersinglet oxygentransfersphotoinduced electron-transferphotoinduced electron transferchemistry.chemical_compoundgeneration[CHIM]Chemical Scienceselectrogenerated chemiluminescencespectroscopic propertiespolyadsAbsorption (electromagnetic radiation)aza-BODIPYs010405 organic chemistryfullereneOrganic ChemistryGeneral ChemistryChromophorefluorescence spectroscopyPorphyrinFluorescence0104 chemical sciences3. Good healthchemistryelectrochemistryderivativesLuminescence
researchProduct

Frozen or dynamic? : An atomistic simulation perspective on the timescales of electrochemical reactions

2023

Electrochemical systems span a wide range of timescales, and several recent works have put forth the idea that the reaction environment should remain frozen and out of equilibrium during electrochemical electron or proton transfer reactions. Furthermore, simplified treatments of the electrochemical interface model the solvent and ions as frozen molecules. However, the claims and practices of a frozen environment strongly clash with most theoretical and simulation approaches developed to study electrochemical reaction rates. It has also been suggested that the electrode potential should not be fixed when simulating reaction rates due to conductivity limitations, which indicates constant pote…

samplingproton-coupled electron transferelektrokatalyysiGeneral Chemical EngineeringElectrochemistryelectrocatalysissimulointielektrolyytitelectrolytesolvent reorganizationlaskennallinen kemiasähkökemia
researchProduct