Search results for "electron-affinities"

showing 2 items of 2 documents

Functional Extrapolations to Tame Unbound Anions in Density-Functional Theory Calculations

2019

Standard flavors of density-functional theory (DFT) calculations are known to fail in describing anions, due to large self-interaction errors. The problem may be circumvented using localized basis sets of reduced size, leaving no variational flexibility for the extra electron to delocalize. Alternatively, a recent approach exploiting DFT evaluations of total energies on electronic densities optimized at the Hartree-Fock (HF) level has been reported, showing that the self-interaction-free HF densities are able to lead to an improved description of the additional electron, returning affinities in close agreement with the experiments. Nonetheless, such an approach can fail when the HF densitie…

molecular-dynamicsforce-fieldExtrapolationFOS: Physical sciencesElectron01 natural sciencesForce field (chemistry)IonMolecular dynamicsDelocalized electronPhysics - Chemical Physics0103 physical sciences[CHIM]Chemical SciencesPhysical and Theoretical ChemistryapproximationComputingMilieux_MISCELLANEOUSChemical Physics (physics.chem-ph)PhysicsCondensed Matter - Materials Scienceelectron-affinitiesatoms010304 chemical physicsMaterials Science (cond-mat.mtrl-sci)energiesComputational Physics (physics.comp-ph)Computer Science ApplicationsComputational physics[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryEmbeddingDensity functional theoryPhysics - Computational PhysicsJournal of Chemical Theory and Computation
researchProduct

A Comparative Analysis of the Electrophilicity of Organic Molecules between the Computed IPs and EAs and the HOMO and LUMO energies

2007

[EN] The electrophilicity index, omega, of a series of substituted ethylenes used in some relevant organic reactions has been evaluated from the ionization potential JP) and the electron affinity (EA) computed by vertical ionization at the B3LYP/aug-cc-PVTZ level. The corresponding electrophilicity values are well correlated with those obtained from the HOMO and LUMO energies of the neutral molecules. The good linear correlation found between omega(I,A) and omega(H,L)(LBS), and between omega(H,L)(LBS) and omega(H,L)(SBS) allows to confirm the use of the easily available B3LYP/6-31G(*) HOMO and LUMO energies to obtain reasonable values of the global electrophilicity index of organic molecule…

ChemistryBasis-SetsReactivityGeneral Physics and AstronomyScalesOrganic reactionDensity-Functional TheoryComputational chemistryHardnessIonizationElectron affinityElectrophileComputationMoleculeElectron-AffinitiesDensity functional theoryQuantitative characterizationPhysical and Theoretical ChemistryIonization energyHOMO/LUMO
researchProduct