Search results for "electron-density"

showing 3 items of 3 documents

Bis(4-methylthio)phenylthiomethane as assembling ligand for the construction of Cu(I) and Hg(II) coordination polymers. Crystal structures and topolo…

2016

International audience; The novel 1D coordination polymer (CP) [{Cu(mu(2)-Br)(2)Cu}(mu-L2)(2)] CP2 has been obtained by reaction of the tetrakisthioether p-MeSC6H4SCH2SC6H4SMe-p (L2) with CuBr in a 1: 2 metal-to ligand ratio. In contrast to the previously described CP [{Cu(mu(2)-Br)(2)Cu}(mu-L1)(2)] CP1 obtained by reaction of the tetrakisthioether p-MeOC6H4SCH2SC6H4OMe-p (L1) with CuBr, the two independent extended 1D ribbons contain bent Cu(mu(2)-Br)(2)Cu units of the butterfly-type with short Cu center dot center dot center dot Cu separations of 2.679(1) and 2.613(1) angstrom. In contrast to the common planar rhomboid Cu(mu(2)-Br)(2)Cu cluster, this butterfly-shaped geometry of the core …

QT-AIMLuminescenceCoordination polymerStereochemistryCoordination number[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]StackingCrystal structure[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciences[ CHIM ] Chemical Sciencesdinuclear copper(i) complexesInorganic Chemistrychemistry.chemical_compoundelectron-densityThioetheraryl substitutionMaterials Chemistry[CHIM]Chemical Sciencescluster-sizePhysical and Theoretical Chemistrytetrathioether complexesComputingMilieux_MISCELLANEOUSThioether complexesluminescence properties010405 organic chemistrypi-pi stackingAtoms in moleculescu-i interaction[ CHIM.INOR ] Chemical Sciences/Inorganic chemistryMercury0104 chemical sciencesCoordination polymersCrystallographychemistryCovalent bondextended 1dStoichiometryCoppermetal-complexes
researchProduct

Models and data analysis tools for the Solar Orbiter mission

2020

All authors: Rouillard, A. P.; Pinto, R. F.; Vourlidas, A.; De Groof, A.; Thompson, W. T.; Bemporad, A.; Dolei, S.; Indurain, M.; Buchlin, E.; Sasso, C.; Spadaro, D.; Dalmasse, K.; Hirzberger, J.; Zouganelis, I.; Strugarek, A.; Brun, A. S.; Alexandre, M.; Berghmans, D.; Raouafi, N. E.; Wiegelmann, T.; Pagano, P.; Arge, C. N.; Nieves-Chinchilla, T.; Lavarra, M.; Poirier, N.; Amari, T.; Aran, A.; Andretta, V.; Antonucci, E.; Anastasiadis, A.; Auchère, F.; Bellot Rubio, L.; Nicula, B.; Bonnin, X.; Bouchemit, M.; Budnik, E.; Caminade, S.; Cecconi, B.; Carlyle, J.; Cernuda, I.; Davila, J. M.; Etesi, L.; Espinosa Lara, F.; Fedorov, A.; Fineschi, S.; Fludra, A.; Génot, V.; Georgoulis, M. K.; Gilbe…

010504 meteorology & atmospheric sciencescorona [Sun]Solar windAstrophysics[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph]7. Clean energy01 natural scienceslaw.inventionData acquisitionlawCoronal mass ejectiongeneral [Sun]QB AstronomyAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSun: magnetic fieldsQCComputingMilieux_MISCELLANEOUSQBPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]3rd-DASenergetic particlesSolar windCORONAL MASS EJECTIONSnumerical modelingmagnetic fields [Sun]solar windPhysics::Space PhysicsSystems engineeringAstrophysics::Earth and Planetary Astrophysicsatmosphere [Sun]fundamental parameters [Sun]Sun: generalFORCE-FREE FIELDSun: fundamental parametersSolar radiusContext (language use)STREAMER STRUCTUREOrbiter0103 physical sciencesOPTIMIZATION APPROACH[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]POLARIZATION MEASUREMENTSSun: Solar wind3-DIMENSIONAL STRUCTURE0105 earth and related environmental sciencesSpacecraftbusiness.industrySun: corona[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]solar coronaMAGNETIC-FLUX ROPESAstronomy and AstrophysicsSHOCKS DRIVEN115 Astronomy Space scienceSPECTRAL-LINESQC Physics13. Climate actionSpace and Planetary SciencebusinessHeliosphereSun: atmosphereELECTRON-DENSITY
researchProduct

Electron-density critical points analysis and catastrophe theory to forecast structure instability in periodic solids

2018

The critical points analysis of electron density,i.e. ρ(x), fromab initiocalculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points,i.e. such that ∇ρ(xc) = 0 and λ1, λ2, λ3≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) atxc], towards degenerate critical points,i.e. ∇ρ(xc) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood ofxcand allo…

Hessian matrixElectron densitycatastrophe theory010504 meteorology & atmospheric sciencesCondensed Matter Physic010502 geochemistry & geophysics01 natural sciencesBiochemistryInstabilityInorganic Chemistrysymbols.namesakeStructural BiologyAb initio quantum chemistry methodsGeneral Materials Sciencephase/state transitions in crystalPhysical and Theoretical Chemistryphase/state transitions in crystalsEigenvalues and eigenvectors0105 earth and related environmental sciencesPhysicsab initio calculationelectron-density critical pointCondensed matter physicsab initio calculationsDegenerate energy levelsCondensed Matter PhysicsGibbs free energyelectron-density critical points catastrophe theory phase/state transitions in crystals ab initio calculations.symbolsMaterials Science (all)Catastrophe theoryelectron-density critical points
researchProduct