Search results for "electron-density"
showing 3 items of 3 documents
Bis(4-methylthio)phenylthiomethane as assembling ligand for the construction of Cu(I) and Hg(II) coordination polymers. Crystal structures and topolo…
2016
International audience; The novel 1D coordination polymer (CP) [{Cu(mu(2)-Br)(2)Cu}(mu-L2)(2)] CP2 has been obtained by reaction of the tetrakisthioether p-MeSC6H4SCH2SC6H4SMe-p (L2) with CuBr in a 1: 2 metal-to ligand ratio. In contrast to the previously described CP [{Cu(mu(2)-Br)(2)Cu}(mu-L1)(2)] CP1 obtained by reaction of the tetrakisthioether p-MeOC6H4SCH2SC6H4OMe-p (L1) with CuBr, the two independent extended 1D ribbons contain bent Cu(mu(2)-Br)(2)Cu units of the butterfly-type with short Cu center dot center dot center dot Cu separations of 2.679(1) and 2.613(1) angstrom. In contrast to the common planar rhomboid Cu(mu(2)-Br)(2)Cu cluster, this butterfly-shaped geometry of the core …
Models and data analysis tools for the Solar Orbiter mission
2020
All authors: Rouillard, A. P.; Pinto, R. F.; Vourlidas, A.; De Groof, A.; Thompson, W. T.; Bemporad, A.; Dolei, S.; Indurain, M.; Buchlin, E.; Sasso, C.; Spadaro, D.; Dalmasse, K.; Hirzberger, J.; Zouganelis, I.; Strugarek, A.; Brun, A. S.; Alexandre, M.; Berghmans, D.; Raouafi, N. E.; Wiegelmann, T.; Pagano, P.; Arge, C. N.; Nieves-Chinchilla, T.; Lavarra, M.; Poirier, N.; Amari, T.; Aran, A.; Andretta, V.; Antonucci, E.; Anastasiadis, A.; Auchère, F.; Bellot Rubio, L.; Nicula, B.; Bonnin, X.; Bouchemit, M.; Budnik, E.; Caminade, S.; Cecconi, B.; Carlyle, J.; Cernuda, I.; Davila, J. M.; Etesi, L.; Espinosa Lara, F.; Fedorov, A.; Fineschi, S.; Fludra, A.; Génot, V.; Georgoulis, M. K.; Gilbe…
Electron-density critical points analysis and catastrophe theory to forecast structure instability in periodic solids
2018
The critical points analysis of electron density,i.e. ρ(x), fromab initiocalculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points,i.e. such that ∇ρ(xc) = 0 and λ1, λ2, λ3≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) atxc], towards degenerate critical points,i.e. ∇ρ(xc) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood ofxcand allo…