Search results for "energie"

showing 10 items of 215 documents

The electronion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR) - A conceptual design study

2011

The electronion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented. © 2011 Elsevier B.V. All rights reserved.

Nuclear and High Energy PhysicselectronscatteringFORM-FACTORS[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Electron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]DATA-ACQUISITION SYSTEMNUCLEAR-STRUCTURE01 natural sciencesBINDING-ENERGIESCHARGE-DENSITY DISTRIBUTIONSIonCROSS-SECTIONSNuclear physicsNuclei far off stabilityConceptual designeA collider0103 physical sciencesCENTRAL DEPRESSIONElectron scattering010306 general physicsInstrumentationPhysics010308 nuclear & particles physicsScattering29.27.-a 25.30.Bf25.30.Dh21.10.Ft29.20.Dh29.30.-hRELATIVISTIC HEAVY-IONSEXOTIC NUCLEIFacility for Antiproton and Ion ResearchGIANT-RESONANCESStorage ring
researchProduct

The Nuclear astrophysics program at n_TOF (CERN)

2017

An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neut…

Nuclear reactionAstrofísicaAstrophysics and AstronomyCross-sectionnTOFQC1-999Astrophysics::High Energy Astrophysical PhenomenaNeutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Astrophysics01 natural sciences7. Clean energyn_TOF nuclear astrophysics CERNNuclear physicsPhysics and Astronomy (all)Stellar nucleosynthesisBig Bang nucleosynthesisNucleosynthesis0103 physical sciencesCERNNuclear astrophysicsAstrophysics::Solar and Stellar AstrophysicsNuclear Physics - ExperimentNeutronNeutron induced nuclear reactions010306 general physicsNuclear ExperimentAstrophysics::Galaxy AstrophysicsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]Neutrons:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionNeutron capture13. Climate actionNeutron sourceAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]NucleosynthesisNucleosíntesi
researchProduct

Mass measurements on stable nuclides in the rare-earth region with the Penning-trap mass spectrometer RIGA-TRAP

2011

The masses of 15 stable nuclides in the rare-earth region have been measured with the Penning-trap mass spectrometer TRIGA-TRAP. This is the first series of absolute mass measurements linking these nuclides to the atomic-mass standard $^{12}\mathrm{C}$. Previously, nuclear reaction studies almost exclusively determined the literature values of these masses in the Atomic-Mass Evaluation. The TRIGA-TRAP results show deviations on the order of 3--4 standard deviations from the latest published values of the Atomic-Mass Evaluation 2003 for some cases. However, the binding-energy differences that are important for nuclear structure studies have been confirmed and improved. The new masses are dis…

Nuclear reactionNuclear and High Energy PhysicsBinding energyRESONANCE NEUTRON-CAPTURE[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Mass spectrometryNUCLEAR-STRUCTURE01 natural sciencesBeta-decay stable isobarsNuclear physics0103 physical sciencesNuclidePhysics::Atomic PhysicsSU(4) SYMMETRY010306 general physicsNuclear ExperimentSEPARATION ENERGIESPhysicsIsotopeCARBON CLUSTERS010308 nuclear & particles physicsCarbon-12ISOSPIN SYMMETRYRAMSEY METHODGAMMAPenning trapISOTOPESATOMIC MASS
researchProduct

Measurement of the 241Am neutron capture cross section at the n-TOF facility at CERN

2016

New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241 Am(n,γ) cross section at the n TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental …

Nuclear reactionNuclear transmutationnTOFQC1-999Neutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsPhysics and Astronomy (all)Cross section (physics)Nuclear reactorsReactors nuclears0103 physical sciencesCERNNeutron cross sectionNuclear Physics - Experimentddc:530Neutron010306 general physicsAbsorption (electromagnetic radiation)PhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Large Hadron ColliderCross section:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionCalorimeter
researchProduct

Nuclear data activities at the n_TOF facility at CERN

2016

International audience; Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluate…

Nuclear reactionU-235Nuclear transmutationnTOFCAPTURE CROSS-SECTIONNuclear dataTOTAL ABSORPTION CALORIMETERGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]COLLABORATION7. Clean energy01 natural sciences3100PHYSICSNuclear physicsPhysics and Astronomy (all)neutronDESIGNRadiation dosimetry0103 physical sciencesCERNn_TOFNuclear Physics - ExperimentNeutron010306 general physicsnuclear data n_TOF CERNPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsFRAGMENT ANGULAR-DISTRIBUTIONLarge Hadron Colliderntof:Física [Àrees temàtiques de la UPC]Cross section010308 nuclear & particles physicscernExperimental dataRadioactive wasteNuclear datanuclear dataNATURAL SCIENCES. Physics.Radiació--DosimetriaPRIRODNE ZNANOSTI. Fizika.Nuclear technologyCAPTURE CROSS-SECTION TOTAL ABSORPTION CALORIMETER FRAGMENT ANGULAR-DISTRIBUTION NEUTRON TH-232 U-235 C6D6 COLLABORATION PHYSICS DESIGN.NEUTRONTH-232C6D6
researchProduct

The 33S(n,α)30Si cross section measurement at n TOF-EAR2 (CERN): From 0.01 eV to the resonance region

2017

The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT).

Nuclear reactionnTOFNeutron therapyQC1-999chemistry.chemical_elementNeutron01 natural sciencesResonance (particle physics)Nuclear physicsCross section (physics)Physics and Astronomy (all)0103 physical sciencesCERNNeutronddc:530010306 general physicsBoronPhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Range (particle radiation)Large Hadron Collidercross sectionReaccions nuclears:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionNeutron capturechemistryNuclear reactions
researchProduct

High precision measurement of the radiative capture cross section of 238U at the n_TOF CERN facility

2016

The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n-TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented. © The Authors, published by EDP Sciences, 2017.

Nuclear reactionnTOFQC1-999Neutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsCross section (physics)Physics and Astronomy (all)Nuclear reactorsReactors nuclears0103 physical sciencesThermalCERNNeutronddc:530Nuclear Physics - Experiment010306 general physicsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsRange (particle radiation)Large Hadron Collider:Física [Àrees temàtiques de la UPC]Cross section010308 nuclear & particles physicsPhysicsRadiative captureNuclear energyNuclear reactionEnergia nuclearEnergy (signal processing)
researchProduct

The 236U neutron capture cross-section measured at the n TOF CERN facility

2016

International audience; The $^{236}$U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the $^{236} \text{U}(n, \gamma)$ reaction cross-section has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n_TOF facility with two different detection systems: an array of C$_6$D$_6$ detectors, employing the total energy deposited method, and a 4$\pi$ total absorption calorimeter (TAC), made of 40 BaF$_2$ crystals. The t…

Nuclear reactionnTOFQC1-999Neutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsPhysics and Astronomy (all)Cross section (physics)0103 physical sciencesCERNNeutron cross sectionNuclear Physics - Experimentddc:530Neutron010306 general physicsAbsorption (electromagnetic radiation)PhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]IsotopeCross sectionReaccions nuclears:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsResonanceNuclear reactionCalorimeter13. Climate actionNuclear reactions
researchProduct

New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels: Preliminary results in the RRR

2016

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70’s, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its “High Priority Request List” and its report WPEC-26 that the capture cross section of 242Pu…

Nuclear reactionnTOFQC1-999Nuclear engineeringContext (language use)CERN nTOFNeutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyPhysics and Astronomy (all)Nuclear reactorsReactors nuclears0103 physical sciencesCERNNeutron cross sectionNuclear Physics - ExperimentNeutronddc:530242Pu neutron capture010306 general physicsMOX fuelNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Fissile materialCross section:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsNuclear reactionSpent nuclear fuelNeutron temperature13. Climate actionneutron time-of-flight measurement
researchProduct

The ANTARES telescope neutrino alert system

2012

The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.

Optical telescopesPhysics::Instrumentation and DetectorsAstrophysics7. Clean energy01 natural sciencesGamma ray burstsFOLLOW-UP OBSERVATIONSlaw.inventionlawFlaring activeVery high energiesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGAMMA-RAY BURSTS[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsSupernovaNeutrino detectorNeutrino astronomyFísica nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesOptical telescopeTelescopeMuon tracksCoincidentSEARCHDetection methods0103 physical sciencesCore collapse supernovae010306 general physicsOptical follow-upInstrumentation and Methods for Astrophysics (astro-ph.IM)Neutronsantares; neutrino astronomy; optical follow-up; transient sourcesANTARES010308 nuclear & particles physicsGamma raysAstronomyAstronomy and AstrophysicsAlert systemsStarsTransient sources[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Optical signalsPotential sources13. Climate actionFISICA APLICADAHigh Energy Physics::ExperimentNeutrino astronomyGamma-ray burst
researchProduct