Search results for "entanglement"
showing 10 items of 371 documents
Entanglement dynamics of two independent cavity-embedded quantum dots
2010
We investigate the dynamical behavior of entanglement in a system made by two solid-state emitters, as two quantum dots, embedded in two separated micro-cavities. In these solid-state systems, in addition to the coupling with the cavity mode, the emitter is coupled to a continuum of leaky modes providing additional losses and it is also subject to a phonon-induced pure dephasing mechanism. We model this physical configuration as a multipartite system composed by two independent parts each containing a qubit embedded in a single-mode cavity, exposed to cavity losses, spontaneous emission and pure dephasing. We study the time evolution of entanglement of this multipartite open system finally …
Toward computability of trace distance discord
2014
It is known that a reliable geometric quantifier of discord-like correlations can be built by employing the so-called trace distance. This is used to measure how far the state under investigation is from the closest "classical-quantum" one. To date, the explicit calculation of this indicator for two qubits was accomplished only for states such that the reduced density matrix of the measured party is maximally mixed, a class that includes Bell-diagonal states. Here, we first reduce the required optimization for a general two-qubit state to the minimization of an explicit two-variable function. Using this framework, we show next that the minimum can be analytically worked out in a number of r…
Polynomial method to study the entanglement of pure N-qubit states
2009
We present a mapping which associates pure N-qubit states with a polynomial. The roots of the polynomial characterize the state completely. Using the properties of the polynomial we construct a way to determine the separability and the number of unentangled qubits of pure N-qubit states.
Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling
2014
In this paper we study how to preserve entanglement and nonlocality under dephasing produced by classical noise with large low-frequency components, as $1/f$ noise, by Dynamical Decoupling techniques. We first show that quantifiers of entanglement and nonlocality satisfy a closed relation valid for two independent qubits locally coupled to a generic environment under pure dephasing and starting from a general class of initial states. This result allows to assess the efficiency of pulse-based dynamical decoupling for protecting nonlocal quantum correlations between two qubits subject to pure-dephasing local random telegraph and $1/f$-noise. We investigate the efficiency of an "entanglement m…
Quantum superpositions of clockwise and counterclockwise supercurrent states in the dynamics of a rf-SQUID exposed to a quantized electromagnetic fie…
2002
The dynamical behavior of a superconducting quantum interference device (a rf-SQUID) irradiated by a single mode quantized electromagnetic field is theoretically investigated. Treating the SQUID as a flux qubit, we analyze the dynamics of the combined system within the low lying energy Hilbert subspace both in the asymmetric and in the symmetric SQUID potential configurations. We show that the temporal evolution of the system is dominated by an oscillatory behavior characterized by more than one, generally speaking, incommensurable Rabi frequencies whose expressions are explicitly given. We find that the external parameters may fixed in such a way to realize a control on the dynamical repla…
Casimir-Polder potentials as entanglement probe
2007
We have considered the interaction of a pair of spatially separated two-level atoms with the electromagnetic field in its vacuum state and we have analyzed the amount of entanglement induced between the two atoms by the non local field fluctuations. This has allowed us to characterize the quantum nature of the non local correlations of the electromagnetic field vacuum state as well as to link the induced quantum entanglement with Casimir-Polder potentials.
Universal N-partite d-level pure-state entanglement witness based on realistic measurement settings
2018
Entanglement witnesses are operators that are crucial for confirming the generation of specific quantum systems, such as multipartite and high-dimensional states. For this reason, many witnesses have been theoretically derived which commonly focus on establishing tight bounds and exhibit mathematical compactness as well as symmetry properties similar to that of the quantum state. However, for increasingly complex quantum systems, established witnesses have lacked experimental achievability, as it has become progressively more challenging to design the corresponding experiments. Here, we present a universal approach to derive entanglement witnesses that are capable of detecting the presence …
Exact quantum dynamics of interacting spin systems subjected to controllable time dependent magnetic fields
2020
On the validity of non-Markovian master equation approaches for the entanglement dynamics of two-qubit systems
2010
In the framework of the dissipative dynamics of coupled qubits interacting with independent reservoirs, a comparison between non-Markovian master equation techniques and an exact solution is presented here. We study various regimes in order to find the limits of validity of the Nakajima–Zwanzig and the time-convolutionless master equations in the description of the entanglement dynamics. A comparison between the performances of the concurrence and the negativity as entanglement measures for the system under study is also presented.