Search results for "entanglement"

showing 10 items of 371 documents

Quantum walk on a cylinder

2016

We consider the 2D alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or "hidden" extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components, which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasi-momentum in the closed dimension. In the continuous space-time limit, the different components manifest as …

High Energy Physics - Theorymass generationQuantum simulatorFOS: Physical sciencesQuantum entanglementGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmology010305 fluids & plasmassymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesquantum walksQuantum walkBoundary value problem010306 general physicsEntropy (arrow of time)ComputingMilieux_MISCELLANEOUSquantum simulationPhysicsQuantum Physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]Mass generationExtra dimensionsClassical mechanicsHigh Energy Physics - Theory (hep-th)Dirac equationsymbolsQuantum Physics (quant-ph)
researchProduct

Tensor-product states and local indistinguishability: an optical linear implementation

2000

In this paper we investigate the properties of distinguishability of an orthogonal set of product states of two three level particle system by a simple class of joint measures. Here we confine ourselves to a system of analysis built up of linear elements, such as beam splitters and phase shifters, delay lines, electronically switched linear devices and auxiliary photons. We present here the impossibility of realization of a perfect never falling analyzer with this tools.

Hilbert spaceQuantum entanglementTopologylaw.inventionQuantum nonlocalitysymbols.namesakeTensor productQuantum Information Entanglement Non-localitylawProduct (mathematics)Electronic engineeringsymbolsQuantum informationRealization (systems)Beam splitterMathematicsAIP Conference Proceedings
researchProduct

Discrete Symmetries CP, T, CPT

2016

The role of Symmetry Breaking mechanisms to search for New Physics is of highest importance. We discuss the status and prospects of the Discrete Symmetries CP, T, CPT looking for their separate Violation in LHC experiments and meson factories.

HistoryParticle physicsMeson productionMesonCPT symmetryQC1-999Physics beyond the Standard ModelGeneral Physics and AstronomyFOS: Physical sciencesQuantum entanglement01 natural sciencesEducationHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesSymmetry breaking010306 general physicsPhysicsLarge Hadron Collider010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixPhysicsOperator (physics)High Energy Physics::PhenomenologyTime evolutionComputer Science ApplicationsB-factoryBaryogenesisStandard Model (mathematical formulation)High Energy Physics - PhenomenologyHomogeneous spaceCP violationHigh Energy Physics::ExperimentEPJ Web of Conferences
researchProduct

Lindblad equation approach for the full counting statistics of work and heat in driven quantum systems

2013

We formulate the general approach based on the Lindblad equation to calculate the full counting statistics of work and heat produced by driven quantum systems weakly coupled with a Markovian thermal bath. The approach can be applied to a wide class of dissipative quantum systems driven by an arbitrary force protocol. We show the validity of general fluctuation relations and consider several generic examples. The possibilities of using calorimetric measurements to test the presence of coherence and entanglement in the open quantum systems are discussed. QC 20141010

Hot TemperatureQuantum simulatorFOS: Physical sciencesresonance fluorescenceQuantum entanglementCalorimetry01 natural sciences010305 fluids & plasmasOpen quantum system0103 physical sciencesStatisticsFysikStatistical physicsequality010306 general physicsQuantum statistical mechanicsPhysicsQuantum discordQuantum Physicsta114Lindblad equationModels TheoreticalClassical mechanicsPhysical SciencesDissipative systemQuantum TheoryQuantum algorithmfluctuation theoremQuantum Physics (quant-ph)
researchProduct

Quantum entanglement of identical particles by standard information-theoretic notions

2016

Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. We introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory …

Identical ParticleQuantum informationPartial traceFOS: Physical sciencesQuantum information; Quantum mechanics; Identical Particles; EntanglementQuantum entanglement01 natural sciencesSettore FIS/03 - Fisica Della MateriaArticle010305 fluids & plasmasEntanglementTheoretical physics0103 physical sciencesQuantum information010306 general physicsWave functionQuantumBosonPhysicsQuantum PhysicsMultidisciplinaryQuantum mechanicSecond quantizationQuantum Physics (quant-ph)Identical particlesScientific Reports
researchProduct

Universality of Schmidt decomposition and particle identity

2017

Schmidt decomposition is a widely employed tool of quantum theory which plays a key role for distinguishable particles in scenarios such as entanglement characterization, theory of measurement and state purification. Yet, it is held not to exist for identical particles, an open problem forbidding its application to analyze such many-body quantum systems. Here we prove, using a newly developed approach, that the Schmidt decomposition exists for identical particles and is thus universal. We find that it is affected by single-particle measurement localization and state overlap. We study paradigmatic two-particle systems where identical qubits and qutrits are located in the same place or in sep…

Identical ParticleQutritSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciSchmidt decompositionIdentical Particles; Schmidt Decomposition; Quantum Entanglement; Qubit; QutritOpen problemFOS: Physical sciences02 engineering and technologyQuantum entanglement01 natural sciencesArticleSettore FIS/03 - Fisica Della MateriaSchmidt Decomposition0103 physical sciencesStatistical physicsQuantum information010306 general physicsQuantumPhysicsQuantum PhysicsMultidisciplinaryQuantum Physics021001 nanoscience & nanotechnologyUniversality (dynamical systems)QubitQubitQuantum Entanglement0210 nano-technologyQuantum Physics (quant-ph)Identical particles
researchProduct

Entangled states and coherent interaction in resonant media

2014

The entanglement features of some solid state materials, as well as of particular systems of interacting atoms and fields are analyzed. A detailed investigation of the rich phase structure of low dimensional spin models, describing the natural mineral azurite and copper based coordination compounds, has revealed regimes with the most robust entanglement behavior. Using the dynamical system approach, the phase structure of some classical models on hierarchical (recursive) lattices has been also studied and, for the first time, the transition between chaotic and periodic regimes by means of tangent bifurcation has been detected.A detailed description of entanglement properties of three atoms …

Intrication quantique[PHYS.PHYS]Physics [physics]/Physics [physics]Dispersive regimeSpin-lattice modelsTransfert adiabatique de population[ PHYS.PHYS ] Physics [physics]/Physics [physics]Entanglement distillationQuantum entanglementRégime dispersifDistillation de l'intricationAdiabatic population transferChaos[PHYS.PHYS] Physics [physics]/Physics [physics]BifurcationModèles de réseaux de spins
researchProduct

Atoms, Photons and Entanglement for Quantum Information Technologies

2011

Atoms, Photons and Entanglement for Quantum Information Technologies Julio T. Barreiro a, Dieter Meschede b, Eugene Polzik c, E. Arimondo d, Fabrizio Illuminati e, Luigi Lugiato f a Institut fur Experimentalphysik, Universitat Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria b Institut fur Angewandte Physik, Universitat Bonn, Wegelerstr. 8, D-53115 Bonn, Germany c Niels Bohr Institute, Danish Quantum Optics Center QUANTOP, Copenhagen University, Blegdamsvej 17, 2100 Copenhagen, Denmark d Dipartimento di Fisica, Universita di Pisa, Lgo Buonarroti 3, I-56122 Pisa, Italy e Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (…

IonsQuantum opticsAtomsPhotonsQuantum discordQuantum networkPhotonComputer scienceQuantum sensorCavity quantum electrodynamicsQuantum simulatorQuantum entanglementIonQuantum technologyOpen quantum systemQuantum computationAtomGeneral Earth and Planetary SciencesQuantum simulationQuantum EntanglementQuantum informationAmplitude damping channelHumanitiesGeneral Environmental ScienceQuantum computerProcedia Computer Science
researchProduct

DECAY OF NONLOCALITY DUE TO ADIABATIC AND QUANTUM NOISE IN THE SOLID STATE

2010

We study the decay of quantum nonlocality, identified by the violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality, for two noninteracting Josephson qubits subject to independent baths with broadband spectra typical of solid state nanodevices. The bath noise can be separated in an adiabatic (low-frequency) and in a quantum (high-frequency) part. We point out the qualitative different effects on quantum nonlocal correlations induced by adiabatic and quantum noise. A quantitaive analysis is performed for typical noise figures in Josephson systems. Finally we compare, for this system, the dynamics of nonlocal correlations and of entanglement.

Josephson charge qubitsPhysicsQuantum Physicsopen quantum systemPhysics and Astronomy (miscellaneous)Quantum noiseFOS: Physical sciencesopen quantum systemsQuantum PhysicsQuantum entanglementNonlocality; open quantum systems; Josephson charge qubitsNoise (electronics)Settore FIS/03 - Fisica Della MateriaQuantum nonlocalityBell's theoremQubitQuantum mechanicsNonlocalityQuantum Physics (quant-ph)Adiabatic processQuantumInternational Journal of Quantum Information
researchProduct

Selective reset of a chain of interacting superconducting qubits

2010

We propose and analyze a scheme for the selective reset of a chain of inductively coupled Josephson flux qubits initially prepared in a multipartite entangled state. The possibility of controlling at will the coupling between two prefixed qubits is exploited to drive a "generalized W state" to a factorized state with only one qubit in the excited state and all the other qubits in their own ground states.

Josephson devices Quantum computing Entanglement Quantum control.Settore FIS/03 - Fisica Della Materia
researchProduct