Search results for "environmental monitoring"
showing 10 items of 609 documents
Progress on bringing together raptor collections in Europe for contaminant research and monitoring in relation to chemicals regulation.
2019
Paola Movalli et al.
Volatile Profiles of Emissions from Different Activities Analyzed Using Canister Samplers and Gas Chromatography-Mass Spectrometry (GC/MS) Analysis: …
2017
The objective of present study was to identify volatile organic compounds (VOCs) emitted from several sources (fuels, traffic, landfills, coffee roasting, a street-food laboratory, building work, indoor use of incense and candles, a dental laboratory, etc.) located in Palermo (Italy) by using canister autosamplers and gas chromatography-mass spectrometry (GC-MS) technique. In this study, 181 VOCs were monitored. In the atmosphere of Palermo city, propane, butane, isopentane, methyl pentane, hexane, benzene, toluene, meta- and para-xylene, 1,2,4 trimethyl benzene, 1,3,5 trimethyl benzene, ethylbenzene, 4 ethyl toluene and heptane were identified and quantified in all sampling sites.
The key role played by the Augusta basin (southern Italy) in the mercury contamination of the Mediterranean Sea.
2011
The Augusta basin, located in SE Sicily (southern Italy), is a semi-enclosed marine area, labelled as a highly contaminated site. The release of mercury into the harbour seawater and its dispersion to the blue water, make the Augusta basin a potential source of anthropogenic pollution for the Mediterranean Sea. A mass balance was implemented to calculate the HgT budget in the Augusta basin. Results suggest that an average of ∼0.073 kmol of HgT is released, by diffusion, on a yearly basis, from sediments to the seawater, with a consequent output of 0.162 kmol y(-1) to coastal and offshore waters; this makes the Augusta area an important contributor of mercury to the Mediterranean Sea. Owing …
New research in the methods and applications of sclerochronology
2017
Abstract Because the instrumental record is short and does not extend to periods before the initiation of significant human impacts, full understanding of the processes and dynamics involved in the modern phase of very rapid global change depends on the interpretation of high resolution and precisely dated proxy archives. The identification of very long-lived species of bivalve mollusc in the extratropical marine environment has been a crucial recent advance. These molluscs form patterns of periodic (usually annual) banding in their shells that are synchronous within populations, so that long (centennial and millennial) stacked chronologies can be built by crossdating from live collected to…
Environmental DNA effectively captures functional diversity of coastal fish communities.
2020
Robust assessments of taxonomic and functional diversity are essential components of research programmes aimed at understanding current biodiversity patterns and forecasting trajectories of ecological changes. Yet, evaluating marine biodiversity along its dimensions is challenging and dependent on the power and accuracy of the available data collection methods. Here we combine three traditional survey methodologies (underwater visual census strip transects [UVCt], baited underwater videos [BUV] and small-scale fishery catches [SSFc]), and one novel molecular technique (environmental DNA metabarcoding [eDNA]-12S rRNA and cytochrome oxidase subunit 1 [COI]) to investigate their efficiency and…
Epifaunal and infaunal responses to submarine mine tailings in a Norwegian fjord.
2019
Abstract Disposal of mine tailings in marine shallow water ecosystems represents an environmental challenge, and the present paper reports results from a field study in Fraenfjorden, Norway, which is subject to such disposal. Structural and functional responses of benthic infauna and epifauna were investigated along a gradient from heavy tailings deposition to reference conditions. The tailings clearly impacted the faunal composition, with lowered species number close to the outfall. Total abundance of infauna increased in the most impacted area due to dominance of opportunistic species, whereas the epifauna was reduced and represented by a few scattered specimens only. In the most impacted…
Spatial variability of soft-bottom macrobenthic communities in northern Sicily (Western Mediterranean): Contrasting trawled vs. untrawled areas
2016
13 páginas, 9 tablas, 5 figuras
Fuzzy quantification of common and rare species in ecological communities (FuzzyQ)
2021
International audience; Most species in ecological communities are rare, whereas only a few are common. This distributional paradox has intrigued ecologists for decades but the interpretation of species abundance distributions remains elusive.We present Fuzzy Quantification of Common and Rare Species in Ecological Communities (FuzzyQ) as an R package. FuzzyQ shifts the focus from the prevailing species-categorization approach to develop a quantitative framework that seeks to place each species along a rarity-commonness gradient. Given a community surveyed over a number of sites, quadrats, or any other convenient sampling unit, FuzzyQ uses a fuzzy clustering algorithm that estimates a probab…
Long-term changes in winter abundance of the barbastelle Barbastella barbastellus in Poland and the climate change - Are current monitoring schemes s…
2020
Warmer winters may lead to changes in the hibernation behaviour of bats, such as the barbastelle Barbastella barbastellus, which prefers to hibernate at low temperatures. The species is also known for its large annual fluctuations in the number of wintering individuals, so inference about population trends should be based on long-term data. Prior to 2005, analyses indicated stable or even increasing barbastelle population in Poland. We analysed the results of 13 winter bat counts (2005–2017) of the species from 15 of the largest hibernacula, and additional site of 47 small bunkers, in Poland. The total number of wintering individuals remained stable during the study period, because the barb…
Impact of high pCO2 on shell structure of the bivalve Cerastoderma edule
2016
Raised atmospheric emissions of carbon dioxide (CO2) result in an increased ocean pCO2 level and decreased carbonate saturation state. Ocean acidification potentially represents a major threat to calcifying organisms, specifically mollusks. The present study focuses on the impact of elevated pCO2 on shell microstructural and mechanical properties of the bivalve Cerastoderma edule. The mollusks were collected from the Baltic Sea and kept in flow-through systems at six different pCO2 levels from 900 μatm (control) to 24,400 μatm. Extreme pCO2 levels were used to determine the effects of potential leaks from the carbon capture and sequestration sites where CO2 is stored in sub-seabed geologica…