Search results for "estimator"

showing 10 items of 313 documents

Estimating with kernel smoothers the mean of functional data in a finite population setting. A note on variance estimation in presence of partially o…

2014

In the near future, millions of load curves measuring the electricity consumption of French households in small time grids (probably half hours) will be available. All these collected load curves represent a huge amount of information which could be exploited using survey sampling techniques. In particular, the total consumption of a specific cus- tomer group (for example all the customers of an electricity supplier) could be estimated using unequal probability random sampling methods. Unfortunately, data collection may undergo technical problems resulting in missing values. In this paper we study a new estimation method for the mean curve in the presence of missing values which consists in…

FOS: Computer and information sciencesStatistics and ProbabilityPopulationRatio estimatorLinearizationRatio estimator01 natural sciencesSurvey sampling.Horvitz–Thompson estimatorMethodology (stat.ME)010104 statistics & probabilityH\'ajek estimator0502 economics and businessApplied mathematicsMissing valuesHorvitz-Thompson estimator0101 mathematicseducationStatistics - Methodology050205 econometrics MathematicsPointwiseeducation.field_of_study[STAT.ME] Statistics [stat]/Methodology [stat.ME]05 social sciencesNonparametric statisticsEstimator16. Peace & justiceMissing dataFunctional data[ STAT.ME ] Statistics [stat]/Methodology [stat.ME]Kernel (statistics)Statistics Probability and UncertaintyNonparametric estimation[STAT.ME]Statistics [stat]/Methodology [stat.ME]
researchProduct

A New Nonparametric Estimate of the Risk-Neutral Density with Applications to Variance Swaps

2021

We develop a new nonparametric approach for estimating the risk-neutral density of asset prices and reformulate its estimation into a double-constrained optimization problem. We evaluate our approach using the S\&P 500 market option prices from 1996 to 2015. A comprehensive cross-validation study shows that our approach outperforms the existing nonparametric quartic B-spline and cubic spline methods, as well as the parametric method based on the Normal Inverse Gaussian distribution. As an application, we use the proposed density estimator to price long-term variance swaps, and the model-implied prices match reasonably well with those of the variance future downloaded from the CBOE websi…

FOS: Computer and information sciencesStatistics and ProbabilityVariance swapOptimization problemvariance swapStatistics - ApplicationsFOS: Economics and businessNormal-inverse Gaussian distributiondouble-constrained optimizationpricingEconometricsApplications (stat.AP)Asset (economics)normal inverse Gaussian distributionMathematicsParametric statisticslcsh:T57-57.97Applied MathematicsNonparametric statisticsEstimatorVariance (accounting)lcsh:Applied mathematics. Quantitative methodsPricing of Securities (q-fin.PR)risk-neutral densitylcsh:Probabilities. Mathematical statisticslcsh:QA273-280Quantitative Finance - Pricing of Securities
researchProduct

Fast Estimation of Diffusion Tensors under Rician noise by the EM algorithm

2016

Diffusion tensor imaging (DTI) is widely used to characterize, in vivo, the white matter of the central nerve system (CNS). This biological tissue contains much anatomic, structural and orientational information of fibers in human brain. Spectral data from the displacement distribution of water molecules located in the brain tissue are collected by a magnetic resonance scanner and acquired in the Fourier domain. After the Fourier inversion, the noise distribution is Gaussian in both real and imaginary parts and, as a consequence, the recorded magnitude data are corrupted by Rician noise. Statistical estimation of diffusion leads a non-linear regression problem. In this paper, we present a f…

FOS: Computer and information sciencesreduced computationGaussianModels NeurologicalDatasets as Topicta3112Statistics - ComputationStatistics - ApplicationsTime030218 nuclear medicine & medical imagingMethodology (stat.ME)Diffusion03 medical and health sciencessymbols.namesake0302 clinical medicineScoring algorithmRician fadingPrior probabilityExpectation–maximization algorithmImage Processing Computer-AssistedMaximum a posteriori estimationHumansApplications (stat.AP)Computer SimulationComputation (stat.CO)Statistics - MethodologyMathematicsta112Likelihood FunctionsGeneral NeuroscienceBrainEstimatormaximum likelihood estimatorFisher scoringMagnetic Resonance ImagingWhite MatterRician likelihoodDiffusion Tensor ImagingFourier transformNonlinear Dynamicssymbolsmaximum a posteriori estimatorAlgorithmAlgorithms030217 neurology & neurosurgerydata augmentation
researchProduct

Semiparametric stochastic frontier models: A generalized additive model approach

2017

Abstract The choice of the functional form of the frontier into a stochastic frontier model is typically neglected in applications and canonical functions are usually considered. This paper introduces a semiparametric approach for stochastic frontier estimation that extends previous works based on pseudo-likelihood estimators allowing flexibility in model selection and capability of imposing monotonicity and concavity constraints. For these purposes the present work introduces a generalized additive framework that moreover permits to model the influence of contextual/environmental factors to the hypothesized production process by the relative extension given by generalized additive models f…

Flexibility (engineering)Mathematical optimizationInformation Systems and ManagementGeneral Computer ScienceScale (ratio)Model selection05 social sciencesGeneralized additive modelEstimatorMonotonic functionManagement Science and Operations Research01 natural sciencesIndustrial and Manufacturing Engineering010104 statistics & probabilityModeling and Simulation0502 economics and businessData envelopment analysis050207 economics0101 mathematicsGeneralized additive model for location scale and shapeMathematics
researchProduct

Probabilistic forecast for Northern New Zealand seismic process: a kernel-based approach

2009

Forecast of earthquakes of a given area of Northern New Zealand is provided. It is based on the assumption that future earthquakes activity may be based on the smoothing of past earthquakes. Therefore, seismic activity is described by an intensity function factorized into kernel functions which depend on time longitude and latitude of events.

Forecast of seismic activity kernel estimator New Zealand seismicitySettore SECS-S/01 - Statistica
researchProduct

Functional Principal Components Analysis with Survey Data

2008

This work aims at performing Functional Principal Components Analysis (FPCA) with Horvitz-Thompson estimators when the observations are curves collected with survey sampling techniques. FPCA relies on estimations of the eigenelements of the covariance operator which can be seen as nonlinear functionals. Adapting to our functional context the linearization technique based on the influence function developed by Deville (1999), we prove that these estimators are asymptotically design unbiased and convergent. Under mild assumptions, asymptotic variances are derived for the FPCA’ estimators and convergent estimators of them are proposed. Our approach is illustrated with a simulation study and we…

Functional principal component analysisDelta methodCovariance operatorLinearizationPrincipal component analysisFunctional data analysisEstimatorApplied mathematicsContext (language use)Mathematics
researchProduct

Covariate adjusted censored gaussian lasso estimator

2021

The covariate adjusted glasso is one of the most used estimators for in- ferring genetic networks. Despite its diffusion, there are several fields in applied research where the limits of detection of modern measurement technologies make the use of this estimator theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. In this paper we propose an extension to censored data.

Gaussian graphical modelCensored dataglasso estimatorCensored glasso estimatorSettore SECS-S/01 - Statistica
researchProduct

SPARSE INFERENCE IN COVARIATE ADJUSTED CENSORED GAUSSIAN GRAPHICAL MODELS

2021

The covariate adjusted glasso is one of the most used estimators for inferring genetic networks. Despite its diffusion, there are several fields in applied research where the limits of detection of modern measurement technologies make the use of this estimator theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. In this paper we propose an extension to censored data.

Gaussian graphical modelcensored glasso estimatorcensored dataglasso estimator
researchProduct

Higher-Fidelity Frugal and Accurate Quantile Estimation Using a Novel Incremental <italic>Discretized</italic> Paradigm

2018

Traditional pattern classification works with the moments of the distributions of the features and involves the estimation of the means and variances. As opposed to this, more recently, research has indicated the power of using the quantiles of the distributions because they are more robust and applicable for non-parametric methods. The estimation of the quantiles is even more pertinent when one is mining data streams. However, the complexity of quantile estimation is much higher than the corresponding estimation of the mean and variance, and this increased complexity is more relevant as the size of the data increases. Clearly, in the context of infinite data streams, a computational and sp…

General Computer ScienceDiscretizationLearning automataData stream miningComputer scienceGeneral EngineeringEstimatorContext (language use)02 engineering and technologyRobustness (computer science)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingGeneral Materials ScienceAlgorithmQuantileIEEE Access
researchProduct

Bootstrapping profit change: An application to Spanish banks

2012

The aim of this study is to provide a tool which enables us to conduct statistical analysis in the context of changes in productivity and profit. We build on previous initiatives to decompose profit change into mutually exclusive and exhaustive sources. To do this we use distance functions, which are calculated empirically using linear programming techniques. However, we may not learn a great deal by solving these linear programs unless methods of statistical analysis are used to examine the properties of the relevant estimators. Our purpose is to provide a methodology based on bootstrap that allows us to conduct statistical inference for the profit change decomposition. Thus, it will be po…

General Computer ScienceLinear programmingComputer scienceEstimatorContext (language use)Management Science and Operations ResearchProfit (economics)BankingBootstrapBootstrapping (electronics)Modeling and SimulationEconometricsProductivityProductivityProfits
researchProduct