Search results for "evolutionary computation"
showing 10 items of 113 documents
Distance-based relevance feedback using a hybrid interactive genetic algorithm for image retrieval
2011
Content-based image retrieval (CBIR) systems aim to provide a means to find pictures in large repositories without using any other information except the own content of the images, which is usually represented as a feature vector extracted from low-level descriptors. This paper describes a CBIR algorithm which combines relevance feedback, evolutionary computation concepts and distance-based learning in an attempt to reduce the existing gap between the high level semantic content of the images and the information provided by their low-level descriptors. In particular, a framework which is independent from the particular features used is presented. The effect of different crossover strategies…
Restricted Neighborhood Search Clustering Revisited: An Evolutionary Computation Perspective
2013
Protein-protein interaction networks have been broadly studied in the last few years, in order to understand the behavior of proteins inside the cell. Proteins interacting with each other often share common biological functions or they participate in the same biological process. Thus, discovering protein complexes made of groups of proteins strictly related, can be useful to predict protein functions. Clustering techniques have been widely employed to detect significative biological complexes. In this paper, we integrate one of the most popular network clustering techniques, namely the Restricted Neighborhood Search Clustering (RNSC), with evolutionary computation. The two cost functions in…
Data-Driven Interactive Multiobjective Optimization Using a Cluster-Based Surrogate in a Discrete Decision Space
2019
In this paper, a clustering based surrogate is proposed to be used in offline data-driven multiobjective optimization to reduce the size of the optimization problem in the decision space. The surrogate is combined with an interactive multiobjective optimization approach and it is applied to forest management planning with promising results. peerReviewed
Data-Driven Evolutionary Optimization: An Overview and Case Studies
2019
Most evolutionary optimization algorithms assume that the evaluation of the objective and constraint functions is straightforward. In solving many real-world optimization problems, however, such objective functions may not exist, instead computationally expensive numerical simulations or costly physical experiments must be performed for fitness evaluations. In more extreme cases, only historical data are available for performing optimization and no new data can be generated during optimization. Solving evolutionary optimization problems driven by data collected in simulations, physical experiments, production processes, or daily life are termed data-driven evolutionary optimization. In this…
Scatter Search for the Point-Matching Problem in 3D Image Registration
2008
Scatter search is a population-based method that has recently been shown to yield promising outcomes for solving combinatorial and nonlinear optimization problems. Based on formulations originally proposed in the 1960s for combining decision rules and problem constraints, such as the surrogate constraint method, scatter search uses strategies for combining solution vectors that have proved effective in a variety of problem settings. We present a scatter-search implementation designed to find high-quality solutions for the 3D image-registration problem, which has many practical applications. This problem arises in computer vision applications when finding a correspondence or transformation …
Diversity Management in Memetic Algorithms
2012
In Evolutionary Computing, Swarm Intelligence, and more generally, populationbased algorithms diversity plays a crucial role in the success of the optimization. Diversity is a property of a group of individuals which indicates how much these individuals are alike. Clearly, a group composed of individuals similar to each other is said to have a low diversity whilst a group of individuals dissimilar to each other is said to have a high diversity. In computer science, in the context of population-based algorithms the concept of diversity is more specific: the diversity of a population is a measure of the number of different solutions present, see [239].
Postoperative Lens Position Preoperatively Determined by Scheimpflug Photography
1999
The position of the artificial lens has an important influence on refractive power calculation. We compared the position of the crystalline lens with that of the artificial lens after cataract surgery by means of Scheimpflug photography. A difference in position of approximately 0.8 mm in the anterior direction could be determined.
Parallel global optimization : structuring populations in differential evolution
2010
Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework
2023
Solving real-life data-driven multiobjective optimization problems involves many complicated challenges. These challenges include preprocessing the data, modelling the objective functions, getting a meaningful formulation of the problem, and supporting decision makers to find preferred solutions in the existence of conflicting objective functions. In this paper, we tackle the problem of optimizing the composition of microalloyed steels to get good mechanical properties such as yield strength, percentage elongation, and Charpy energy. We formulate a problem with six objective functions based on data available and support two decision makers in finding a solution that satisfies them both. To …
Fault diagnosis of induction motors broken rotor bars by pattern recognition based on noise cancelation
2014
Current signal monitoring (CSM) can be used as an effective tool for diagnosing broken rotor bars fault in induction motors. In this paper, fault diagnosis and classification based on artificial neural networks (ANNs) is done in two stages. In the first stage, a filter is designed to remove irrelevant fault components (such as noise) of current signals. The coefficients of the filter are obtained by least square (LS) algorithm. Then by extracting suitable time domain features from filter's output, a neural network is trained for fault classification. The output vector of this network is represented in one of four categories that includes healthy mode, a 5 mm crack on a bar, one broken bar, …