Search results for "evolutionary computation"
showing 10 items of 113 documents
A Memetic-Neural Approach to Discover Resources in P2P Networks
2008
This chapter proposes a neural network based approach for solving the resource discovery problem in Peer to Peer (P2P) networks and an Adaptive Global Local Memetic Algorithm (AGLMA) for performing in training of the neural network. The neural network, which is a multi-layer perceptron neural network, allows the P2P nodes to efficiently locate resources desired by the user. The necessity of testing the network in various working conditions, aiming to obtain a robust neural network, introduces noise in the objective function. The AGLMA is a memetic algorithm which employs two local search algorithms adaptively activated by an evolutionary framework. These local searchers, having different fe…
The electron affinity of astatine
2020
One of the most important properties influencing the chemical behavior of an element is the electron affinity (EA). Among the remaining elements with unknown EA is astatine, where one of its isotopes, 211At, is remarkably well suited for targeted radionuclide therapy of cancer. With the At− anion being involved in many aspects of current astatine labeling protocols, the knowledge of the electron affinity of this element is of prime importance. Here we report the measured value of the EA of astatine to be 2.41578(7) eV. This result is compared to state-of-the-art relativistic quantum mechanical calculations that incorporate both the Breit and the quantum electrodynamics (QED) corrections and…
Contextual neural-network based spectrum prediction for cognitive radio
2015
Cognitive radio is the technique of effective electromagnetic spectrum usage important for future wireless communication including 5G networks. Neural networks are nature-inspired computational models used to solve cognitive radio prediction problems. This paper presents the use of contextual Sigma-if neural network in prediction of channel states for cognitive radio. Our results indicate that Sigma-if neural network confirms better predictions than Multilayer Perceptron (MLP) network and decreases sensing time for the benefit of the increase of the effectiveness of e-m spectrum usage.
BELM: Bayesian Extreme Learning Machine
2011
The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This brief proposes a bayesian approach to ELM, which presents some advantages over other approaches: it allows the introduction of a priori knowledge; obtains the confidence intervals (CIs) without the need of applying methods that are computationally intensive, e.g., bootstrap…
SIMULATING THE NUMBER OF ROMANIAN`S PUPILS AND STUDENT USING ARTIFICIAL INTELLIGENCE TECHNIQUES AND COUNTRY`S ECONOMIC ESTATE
2012
The authors present the result of a research that uses artificial neural networks in order to simulate the number of Romanian`s pupils and students (PAS), considering the country`s economic situation. The objective is to determine a better method to forecast the Romanian`s PAS considering its nonlinear behaviour. Also the ANN simulation offers an image about how inputs influence the PAS. In conclusion, the use of the ANN is considered a success and the authors determine the possibility that ANN research application be extended to other countries or even to the European zone.
A Random Neural Network for the Dynamic Multicast Problem
2004
This paper proposes a new heuristic for the dynamic version of the Steiner Tree Problem in Networks (SPN). The heuristic adopts a Random Neural Network (RNN) to improve solutions obtained by previously proposed dynamic algorithms. The Random Neural Network model is adapted to map the intrinsic features of the multicast transmission on a computer network. Exhaustive experiments are carried out to validate the proposed methodology.
Multilayer perceptron neural networks and radial-basis function networks as tools to forecast accumulation of deoxynivalenol in barley seeds contamin…
2011
The capacity of multi-layer perceptron artificial neural networks (MLP-ANN) and radial-basis function networks (RBFNs) to predict deoxynivalenol (DON) accumulation in barley seeds contaminated with Fusarium culmorum under different conditions has been assessed. Temperature (20-28 °C), water activity (0.94-0.98), inoculum size (7-15 mm diameter), and time were the inputs while DON concentration was the output. The dataset was used to train, validate and test many ANNs. Minimizing the mean-square error (MSE) was used to choose the optimal network. Single-layer perceptrons with low number of hidden nodes proved better than double-layer perceptrons, but the performance depended on the training …
An evolutionary restricted neighborhood search clustering approach for PPI networks
2014
Protein-protein interaction networks have been broadly studied in the last few years, in order to understand the behavior of proteins inside the cell. Proteins interacting with each other often share common biological functions or they participate in the same biological process. Thus, discovering protein complexes made of a group of proteins strictly related can be useful to predict protein functions. Clustering techniques have been widely employed to detect significant biological complexes. In this paper, we integrate one of the most popular network clustering techniques, namely the Restricted Neighborhood Search Clustering (RNSC), with evolutionary computation. The two cost functions intr…
Partial Discharges analysis and parameters identification by continuous Ant Colony Optimization
2008
The technique of ant colony optimization has been employed in this paper to efficiently deal with the problem of parameters identification in partial discharge, PD, analysis. The latter is a continuous optimization problem. From the technical point of view the identification of these parameters allows the modeling of the phenomenon of Partial Discharges in dielectrics. In this way it is possible the early diagnosis of defects in Medium Voltage cable lines and components and thus it is possible to prevent possible outages and service interruptions. Analytically, the problem consists of finding the Weibull parameters of the Pulse Amplitude Distribution (PAD) distributions allowing the identif…
SSPMO: A Scatter Tabu Search Procedure for Non-Linear Multiobjective Optimization
2007
We describe the development and testing of a metaheuristic procedure, based on the scatter-search methodology, for the problem of approximating the efficient frontier of nonlinear multiobjective optimization problems with continuous variables. Recent applications of scatter search have shown its merit as a global optimization technique for single-objective problems. However, the application of scatter search to multiobjective optimization problems has not been fully explored in the literature. We test the proposed procedure on a suite of problems that have been used extensively in multiobjective optimization. Additional tests are performed on instances that are an extension of those consid…