Search results for "existence."
showing 10 items of 189 documents
Yang-Mills two-point functions in linear covariant gauges
2015
In this work we use two different but complementary approaches in order to study the ghost propagator of a pure SU(3) Yang-Mills theory quantized in the linear covariant gauges, focusing on its dependence on the gauge-fixing parameter $\xi$ in the deep infrared. In particular, we first solve the Schwinger-Dyson equation that governs the dynamics of the ghost propagator, using a set of simplifying approximations, and under the crucial assumption that the gluon propagators for $\xi>0$ are infrared finite, as is the case in the Landau gauge $(\xi=0)$. Then we appeal to the Nielsen identities, and express the derivative of the ghost propagator with respect to $\xi$ in terms of certain auxiliary…
Charge radii of odd-A 191–211Po isotopes
2013
Isotope shifts have been measured for the odd-A polonium isotopes 191–211Po and changes in the nuclear mean square charge radii δr2 have been deduced. The measurements were performed at CERN-ISOLDE using the in-source resonance-ionization spectroscopy technique. The combined analysis of these data and our recent results for even-A polonium isotopes indicates an onset of deformation already at 197,198Po, when going away from stability. This is significantly earlier than was suggested by previous theoretical and experimental studies of the polonium isotopes. Moreover and in contrast to the mercury isotopes, where a strong odd–even staggering of the charge radii of the ground states was observ…
On the gluon spectrum in the glasma
2010
We study the gluon distribution in nucleus-nucleus collisions in the framework of the Color-Glass-Condensate. Approximate analytical solutions are compared to numerical solutions of the non-linear Yang-Mills equations. We find that the full numerical solution can be well approximated by taking the full initial condition of the fields in Coulomb gauge and using a linearized solution for the time evolution. We also compare kt-factorized approximations to the full solution.
Gluon spectrum in the glasma from JIMWLK evolution
2011
The JIMWLK equation with a "daughter dipole" running coupling is solved numerically starting from an initial condition given by the McLerran-Venugopalan model. The resulting Wilson line configurations are then used to compute the spectrum of gluons comprising the glasma inital state of a high energy heavy ion collision. The development of a geometrical scaling region makes the spectrum of produced gluons harder. Thus the ratio of the mean gluon transverse momentum to the saturation scale grows with energy. Also the total gluon multiplicity increases with energy slightly faster than the saturation scale squared.
Pinch technique at two loops: The case of massless Yang-Mills theories
2000
The generalization of the pinch technique beyond one loop is presented. It is shown that the crucial physical principles of gauge-invariance, unitarity, and gauge-fixing-parameter independence single out at two loops exactly the same algorithm which has been used to define the pinch technique at one loop, without any additional assumptions. The two-loop construction of the pinch technique gluon self-energy, and quark-gluon vertex are carried out in detail for the case of mass-less Yang-Mills theories, such as perturbative QCD. We present two different but complementary derivations. First we carry out the construction by directly rearranging two-loop diagrams. The analysis reveals that, quit…
Perturbative BF-Yang–Mills theory on noncommutative
2000
A U(1) BF-Yang-Mills theory on noncommutative ${\mathbb{R}}^4$ is presented and in this formulation the U(1) Yang-Mills theory on noncommutative ${\mathbb{R}}^4$ is seen as a deformation of the pure BF theory. Quantization using BRST symmetry formalism is discussed and Feynman rules are given. Computations at one-loop order have been performed and their renormalization studied. It is shown that the U(1) BFYM on noncommutative ${\mathbb{R}}^4$ is asymptotically free and its UV-behaviour in the computation of the $\beta$-function is like the usual SU(N) commutative BFYM and Yang Mills theories.
In-beam spectroscopic studies of shape coexistence and collectivity in the neutron-deficientZ≈ 82 nuclei
2016
In the present paper we focus on studies of shape coexistence in even-mass nuclei in the neutron-deficient Pb region. They are based on experiments carried out using tagging techniques in the Accelerator Laboratory of the University of Jyväskylä, Finland. Excited states in many of these nuclei can only be accessed via fusion-evaporation reactions employing high-intensity stable-ion beams. The key features in these experiments are high selectivity, clean spectra and instrumentation that enables high count rates. We review three spectroscopic highlights in this region. peerReviewed
Large Time Behavior for Inhomogeneous Damped Wave Equations with Nonlinear Memory
2020
We investigate the large time behavior for the inhomogeneous damped wave equation with nonlinear memory ϕtt(t,&omega
Interpolating between low and high energy QCD via a 5D Yang-Mills model
2005
We describe the Goldstone bosons of massless QCD together with an infinite number of spin-1 mesons. The field content of the model is SU(Nf)xSU(Nf) Yang-Mills in a compact extra-dimension. Electroweak interactions reside on one brane. Breaking of chiral symmetry occurs due to the boundary conditions on the other brane, away from our world, and is therefore spontaneous. Our implementation of the holographic recipe maintains chiral symmetry explicit throughout. For intermediate energies, we extract resonance couplings. These satisfy sum rules due to the 5D nature of the model. These sum rules imply, when taking the high energy limit, that perturbative QCD constraints are satisfied. We also il…
An existence result for a Neumann problem
2015
The main result of this paper deals with the existence of at least one positive solution for a second order Neumann boundary value problem. Such a result is obtained by using an abstract coincidence point theorem that allows to get our conclusion under non standard conditions on the nonlinearity.