Search results for "extracellular polymeric substance"

showing 4 items of 34 documents

Influence of Bacteria <i>Pseudomonas fluorescens</i> on the Properties of Latvian Clay

2014

Wide varieties of bacteria are able to produce extracellular polymeric substances (EPS) which are mostly composed of polysaccharides. It is suggested that EPS substances can alter certain clay soil properties due to their ability to adhere to the surface of mineral particles. Most common used microorganisms by the researchers for this purpose are of either genus Bacillus or genus Pseudomonas. In this study growth of bacteria P. fluorescens AM PS11 culture in locally obtained clay is studied for the purpose of establishing their influence on rheological properties of clay. An attempt to evaluate it has been made using FT-IR and XRD. Change in plasticity of clay using Atterberg limits method …

chemistry.chemical_classificationMaterials sciencebiologyMechanical EngineeringMicroorganismPseudomonas fluorescensAtterberg limitsGenus PseudomonasPolysaccharidebiology.organism_classificationcomplex mixturesExtracellular polymeric substanceRheologychemistryMechanics of MaterialsGeneral Materials ScienceFood scienceBacteriaKey Engineering Materials
researchProduct

Microhydrological Niches in Soils: How Mucilage and EPS Alter the Biophysical Properties of the Rhizosphere and Other Biological Hotspots

2019

Plant roots and bacteria are capable of buffering erratic fluctuations of water content in their local soil environment by releasing a diverse, highly polymeric blend of substances (e.g. extracellular polymeric substances [EPS] and mucilage). Although this concept is well accepted, the physical mechanisms by which EPS and mucilage interact with the soil matrix and determine the soil water dynamics remain unclear. High-resolution X-ray computed tomography revealed that upon drying in porous media, mucilage (from maize [Zea mays L.] roots) and EPS (from intact biocrusts) form filaments and two-dimensional interconnected structures spanning across multiple pores. Unlike water, these mucilage a…

lcsh:GE1-350lcsh:GeologyEPS extracellular polymeric substances; PSI Paul Scherrer Institute; SRXTM synchrotronbased X-ray tomographic microscopy.lcsh:QE1-996.5630lcsh:Environmental sciencesVadose Zone Journal
researchProduct

Tolerance, Adaptation, and Cell Response Elicited by Micromonospora sp. Facing Tellurite Toxicity: A Biological and Physical-Chemical Characterization

2022

The intense use of tellurium (Te) in industrial applications, along with the improper disposal of Te-derivatives, is causing their accumulation in the environment, where oxyanion tellurite (TeO32−) is the most soluble, bioavailable, and toxic Te-species. On the other hand, tellurium is a rare metalloid element whose natural supply will end shortly with possible economic and technological effects. Thus, Te-containing waste represents the source from which Te should be recycled and recovered. Among the explored strategies, the microbial TeO32− biotransformation into less toxic Te-species is the most appropriate concerning the circular economy. Actinomycetes are ideal candidates in…

multivariate statistical analysisExtracellular Polymeric Substance MatrixSuperoxide DismutaseOrganic ChemistryGeneral MedicineSettore BIO/19 - Microbiologia Generalefatty acidsMicromonosporaCatalysisComputer Science ApplicationsInorganic ChemistryFTIR spectroscopyProtein Aggregatestellurite; bacterial cell membrane; cell morphology changes; fatty acids; FTIR spectroscopy; oxidative stress; heavy metals; multivariate statistical analysisbacterial cell membranecell morphology changesoxidative stressPhysical and Theoretical ChemistryTelluriumheavy metalstelluriteMolecular BiologySpectroscopy
researchProduct

Biopolymer Recovery from Aerobic Granular Sludge and Conventional Flocculent Sludge in Treating Industrial Wastewater: Preliminary Analysis of Differ…

2022

The recovery of biopolymers from sewage sludge could be a crucial step in implementing circular economy principles in wastewater treatment plants (WWTP). In this frame, the present study was aimed at evaluating the simultaneous production of polyhydroxyalkanoates (PHA) and extracellular polymeric substances (EPS) obtainable from the treatment of agro-industrial wastewater. Two biological enrichment systems, aerobic granular sludge (AGS) and a conventional activated sludge operating as a sequencing batch reactor (SBR), were monitored for 204 and 186 days, respectively. The maximum biopolymers accumulation capacity was close to 0.60 mgPHA-EPS gVSS−1 in the AGS when operating at 3 kgCODm…

wastewater treatmentsewage sludgeSettore ICAR/03 - Ingegneria Sanitaria-Ambientalebiopolymercircular economyaerobic granular sludge; biopolymers; circular economy; extracellular polymeric substances; polyhydroxyalkanoates; sewage sludge; wastewater treatmentGeography Planning and Developmentpolyhydroxyalkanoateaerobic granular sludgeAquatic Scienceextracellular polymeric substanceBiochemistryWater Science and TechnologyWater
researchProduct