Search results for "extrapolation"
showing 10 items of 150 documents
Pion cloud contribution to the s-wave repulsion in pionic atoms
1995
Abstract The nuclear pion cloud contribution to the pion self-energy for pionic atoms is evaluated and one finds large cancellations between terms involving the ππ amplitude and other terms originating from the chiral lagrangian partners. While the individual terms depend strongly on the off-shell extrapolation of the ππ amplitude, the sum is model independent within the Olson and Turner family of chiral lagrangians keeping ξ + 4 η constant, as previously found for the πN → ππN and pion double-charge exchange in nuclei, and vanishes in the limit of m π → 0. One finds a small net repulsion which is however too small to account for the “missing” s-wave repulsion. A revision of the present sta…
Short range correlations in the pion s-wave self-energy of pionic atoms
1995
We evaluate the contribution of second order terms to the pion-nucleus s-wave optical potential of pionic atoms generated by short range nuclear correlation. The corrections are sizeable because they involve the isoscalar s-wave $\pi N$ amplitude for half off-shell situations where the amplitude is considerably larger than the on-shell one. In addition, the s-wave optical potential is reanalyzed by looking at all the different conventional contributions together lowest order, Pauli corrected rescattering term, second order absorptive effects, terms from the interaction of pions with the virtual pion cloud (chiral corrections) and correlation effects. Different off-shell extrapolations for t…
Compton scattering on the pion and radiative pion photoproduction from the proton
1994
The contribution of the pion polarizabilities to radiative pion photoproduction has been investigated. It has been shown how an extrapolation of future experimental data on radiative pion photoproduction to the pion pole can give information on the polarizabilities of pion.
The binding energy of 184 476 X in the droplet model
1985
The positron spectrum emitted in the U-U-reaction at subthreshold energy could be interpreted in terms of the formation of a giant nucleus if the binding of the latter is 100 MeV stronger than predicted by the usual droplet model parametrisation. We analyse the extrapolation to giant nuclei by accounting properly for the error propagation when the parameters are fitted to measured binding energies and radii. The influence of higher order terms is discussed.
Lower bound on the proton charge radius from electron scattering data
2019
The proton charge-radius determinations from the electromagnetic form-factor measurements in electron-proton scattering require an extrapolation to zero momentum transfer ($Q^2=0$) which is prone to model-dependent assumptions. We show that the data at finite momentum transfer can be used to establish a rigorous lower bound on the proton charge radius. Using the available $ep$ data at low $Q^2$, we obtain $R_E > 0.850(1)$ fm as the lower bound on the proton radius. This reaffirms the discrepancy between the $ep$ and muonic-hydrogen values, while bypassing the model-dependent assumptions that go into the fitting and extrapolation of the $ep$ data.
Skyrme-force parametrization: Least-squares fit to nuclear ground-state properties.
1986
We investigate systematically the possibilities and the limits of the Skyrme force for reproducing nuclear ground-state properties in a spherical Hartree-Fock calculation. This investigation is performed by means of least-squares fits of the force parameters to the measured binding energy, diffraction radius, and surface width of eight selected nuclei. Particular emphasis is put on the density dependence of the interaction, which turns out to be determined mainly by the surface width. The least-squares fitting procedure yields the best-fit parameters together with uncertainties on them, and it also allows one to estimate the uncertainties of an extrapolation to other fields, e.g., nuclear m…
Global polarization of Λ and Λ¯ hyperons in Pb-Pb collisions at sNN= 2.76 and 5.02 TeV
2020
The global polarization of the $\Lambda$ and $\overline\Lambda$ hyperons is measured for Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 and 5.02 TeV recorded with the ALICE at the LHC. The results are reported differentially as a function of collision centrality and hyperon's transverse momentum ($p_{\rm{T}}$) for the range of centrality 5-50%, $0.5 < p_{\rm{T}} <5$ GeV/$c$, and rapidity $|y|<0.5$. The hyperon global polarization averaged for Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 and 5.02 TeV is found to be consistent with zero, $\langle P_{\rm{H}}\rangle$ (%) $\approx$ 0.01 $\pm$ 0.06 (stat.) $\pm$ 0.03 (syst.) in the collision centrality range 15-50%, where the largest signal i…
Silicon Oxysulfide, OSiS: Rotational Spectrum, Quantum-Chemical Calculations, and Equilibrium Structure.
2011
Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 A and rSi-S = 1.9133 A) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected fi…
Strange Electromagnetic Form Factors of the Nucleon with Nf=2+1 O(a) -Improved Wilson Fermions
2019
We present results for the strange contribution to the electromagnetic form factors of the nucleon computed on the coordinated lattice simulation ensembles with N_{f}=2+1 flavors of O(a)-improved Wilson fermions and an O(a)-improved vector current. Several source-sink separations are investigated in order to estimate the excited-state contamination. We calculate the form factors on six ensembles with lattice spacings in the range of a=0.049-0.086 fm and pion masses in the range of m_{π}=200-360 MeV, which allows for a controlled chiral and continuum extrapolation. In the computation of the quark-disconnected contributions, we employ hierarchical probing as a variance-reduction technique.
Recent Developments in one and two Pion Production in Elementary Reactions and Few-Body Systems
1995
In this talk we cover several issues concerning pion production. The first one is the pp → ppπ 0 reaction where an alternative explanation based on the off shell extrapolation of the πN amplitude is offered. A recent model for the γN → ππN reaction is presented and a new kind of exchange current is constructed from it which allows one to address problems like double ∆ photoproduction from the deuteron. Finally the (γ, ππ) reaction in nuclei is studied and shown to be highly sensitive to the renormalization of the pions in nuclei.