Search results for "fAPAR"

showing 8 items of 8 documents

GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparis…

2013

International audience; This paper describes the scientific validation of the first version of global biophysical products (i.e., leaf area index, fraction of absorbed photosynthetically active radiation and fraction of vegetation cover), namely GEOV1, developed in the framework of the geoland-2/BioPar core mapping service at 1 km spatial resolution and 10-days temporal frequency. The strategy follows the recommendations of the CEOS/WGCV Land Product Validation for LAI global products validation. Several criteria of performance were evaluated, including continuity, spatial and temporal consistency, dynamic range of retrievals, statistical analysis per biome type, precision and accuracy. The…

Accuracy and precision010504 meteorology & atmospheric sciencescouvert végétalcomparaison de modèlesBiomecritère de performanceSoil ScienceMagnitude (mathematics)Context (language use)01 natural sciencesGEOV1;Vegetation variables;Validation;GMES;Land monitoring core servicevalidation scientifiquefraction of absorbed photosynthetically active radiation (fAPAR)GEOV1ValidationfcoverFraction (mathematics)Computers in Earth SciencesLeaf area indexvariable climatiqueMilieux et Changements globauxfraction de couvert0105 earth and related environmental sciencesRemote sensinggmescarte de référenceanalyse statistiquefaparLand monitoring core serviceGeology04 agricultural and veterinary sciencesresolution spatiale15. Life on landComputer scienceLAIindice de surface foliaireSeaWiFSbiome13. Climate actionPhotosynthetically active radiationInformatique (Sciences cognitives)surveillance de l'environnement[SDE]Environmental Sciences040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceVegetation variables
researchProduct

Global Estimation of Biophysical Variables from Google Earth Engine Platform

2018

This paper proposes a processing chain for the derivation of global Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Fraction Vegetation Cover (FVC), and Canopy water content (CWC) maps from 15-years of MODIS data exploiting the capabilities of the Google Earth Engine (GEE) cloud platform. The retrieval chain is based on a hybrid method inverting the PROSAIL radiative transfer model (RTM) with Random forests (RF) regression. A major feature of this work is the implementation of a retrieval chain exploiting the GEE capabilities using global and climate data records (CDR) of both MODIS surface reflectance and LAI/FAPAR datasets allowing the global estim…

random forestsCWC010504 meteorology & atmospheric sciencesMean squared errorScience0211 other engineering and technologiesGoogle Earth Engine; LAI; FVC; FAPAR; CWC; plant traits; random forests; PROSAIL02 engineering and technologyLand cover01 natural sciencesAtmospheric radiative transfer codesRange (statistics)Parametrization (atmospheric modeling)FAPARLeaf area index021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingPROSAILQ15. Life on landFVCLAIRandom forestplant traits13. Climate actionPhotosynthetically active radiationGeneral Earth and Planetary SciencesEnvironmental scienceGoogle Earth EngineRemote Sensing; Volume 10; Issue 8; Pages: 1167
researchProduct

Combining hectometric and decametric satellite observations to provide near real time decametric FAPAR product

2017

Abstract A wide range of ecological, agricultural, hydrological and meteorological applications at local to regional scales requires decametric biophysical data. However, before the launch of SENTINEL-2A, only few decametric products are produced and most of them remain limited by the small number of available observations, mostly due to a moderate revisit frequency combined with cloud occurrence. Conversely, kilometric and hectometric biophysical products are now widely available with almost complete and continuous coverage, but the associated spatial resolution limits the application over heterogeneous landscapes. The objective of this study is to combine unfrequent decametric spatial res…

Point spread functionanalyse de données010504 meteorology & atmospheric sciencesMeteorology[SDV]Life Sciences [q-bio]Real-time computingdata analysis0211 other engineering and technologiesSoil Science02 engineering and technology01 natural sciencesGEOV3Range (statistics)Landsat-8FAPARComputers in Earth Sciencestemps réelImage resolutionphotosynthetically active radiation021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensinganalyse temporellereal timePixelrayonnement photosynthétiquement actifGeologyFunction (mathematics)15. Life on landData fusionSensor fusionDecametricHectometric13. Climate actionPhotosynthetically active radiationtime analysisEnvironmental scienceSatelliteNear real timeobservation satellite
researchProduct

On Line Validation Exercise (OLIVE): A Web Based Service for the Validation of Medium Resolution Land Products. Application to FAPAR Products

2014

International audience; The OLIVE (On Line Interactive Validation Exercise) platform is dedicated to the validation of global biophysical products such as LAI (Leaf Area Index) and FAPAR (Fraction of Absorbed Photosynthetically Active Radiation). It was developed under the framework of the CEOS (Committee on Earth Observation Satellites) Land Product Validation (LPV) sub-group. OLIVE has three main objectives: (i) to provide a consistent and centralized information on the definition of the biophysical variables, as well as a description of the main available products and their performances (ii) to provide transparency and traceability by an online validation procedure compliant with the CEO…

validation;LAI;FAPAR;intercomparison;product;CEOSService (systems architecture)Earth observationTraceabilityComputer scienceScienceintercomparison10127 Institute of Evolutionary Biology and Environmental StudiesDocumentationBenchmark (surveying)Web applicationproductFAPARComputingMilieux_MISCELLANEOUSRemote sensingvalidationbusiness.industryQ1900 General Earth and Planetary SciencesLAI13. Climate action[SDE]Environmental Sciences570 Life sciences; biology590 Animals (Zoology)General Earth and Planetary SciencesbusinessHost (network)Quality assuranceCEOSRemote Sensing
researchProduct

Integrating Domain Knowledge in Data-Driven Earth Observation With Process Convolutions

2022

The modelling of Earth observation data is a challenging problem, typically approached by either purely mechanistic or purely data-driven methods. Mechanistic models encode the domain knowledge and physical rules governing the system. Such models, however, need the correct specification of all interactions between variables in the problem and the appropriate parameterization is a challenge in itself. On the other hand, machine learning approaches are flexible data-driven tools, able to approximate arbitrarily complex functions, but lack interpretability and struggle when data is scarce or in extrapolation regimes. In this paper, we argue that hybrid learning schemes that combine both approa…

FOS: Computer and information sciencesComputer Science - Machine LearningEarth observationAdvanced microwave scanning radiometer-2 (AMSR-2)moderate resolution imaging spectroradiometer (MODIS)Computer scienceleaf area index (LAI)0211 other engineering and technologiesExtrapolationMachine Learning (stat.ML)02 engineering and technologycomputer.software_genreMachine Learning (cs.LG)Data-drivenConvolutionsymbols.namesakeadvanced scatterometer (ASCAT)Statistics - Machine Learningordinary differential equation (ODE)Electrical and Electronic EngineeringGaussian processsoil moisture and ocean salinity (SMOS)021101 geological & geomatics engineeringInterpretabilityForcing (recursion theory)machine learning (ML)soil moisture (SM)time series analysisgaussian process (GP)symbolsGeneral Earth and Planetary SciencesDomain knowledgeData mininggap fillingphysicscomputerfraction of absorbed photosynthetically active radiation (faPAR)IEEE Transactions on Geoscience and Remote Sensing
researchProduct

Noise Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local Regression Filter

2014

Time series of remotely sensed data are an important source of information for understanding land cover dynamics. In particular, the fraction of absorbed photosynthetic active radiation (fAPAR) is a key variable in the assessment of vegetation primary production over time. However, the fAPAR series derived from polar orbit satellites are not continuous and consistent in space and time. Filtering methods are thus required to fill in gaps and produce high-quality time series. This study proposes an adapted (iteratively reweighted) local regression filter (LOESS) and performs a benchmarking intercomparison with four popular and generally applicable smoothing methods: Double Logistic (DLOG), sm…

noise010504 meteorology & atmospheric sciencesRemote sensing applicationComputer scienceNoise reduction0211 other engineering and technologies02 engineering and technologyLand cover01 natural sciencesfAPAR; noise; MODIS; time series; filtering; interpolation; LOESSSmoothing splineLoessLOESSlcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingLocal regressionFilter (signal processing)Vegetation15. Life on landfilteringSnowinterpolationNoiseMODISfAPARGeneral Earth and Planetary Scienceslcsh:Qtime seriesSmoothingInterpolationRemote Sensing
researchProduct

Climate Data Records of Vegetation Variables from Geostationary SEVIRI/MSG Data: Products, Algorithms and Applications

2019

The scientific community requires long-term data records with well-characterized uncertainty and suitable for modeling terrestrial ecosystems and energy cycles at regional and global scales. This paper presents the methodology currently developed in EUMETSAT within its Satellite Application Facility for Land Surface Analysis (LSA SAF) to generate biophysical variables from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on board MSG 1-4 (Meteosat 8-11) geostationary satellites. Using this methodology, the LSA SAF generates and disseminates at a time a suite of vegetation products, such as the leaf area index (LAI), the fraction of the photosynthetically active radiation absorbed …

Data records010504 meteorology & atmospheric sciencesData productsSciencemeteosat second generation (MSG); biophysical parameters (LAI; FVC; FAPAR); SEVIRI; climate data records (CDR); stochastic spectral mixture model (SSMM); Satellite Application Facility for Land Surface Analysis (LSA SAF)0211 other engineering and technologiesstochastic spectral mixture model (SSMM)02 engineering and technology01 natural sciencesFAPAR)climate data records (CDR)Leaf area index021101 geological & geomatics engineering0105 earth and related environmental sciencesQVegetationSEVIRIMixture modelSatellite Application Facility for Land Surface Analysis (LSA SAF)FVCbiophysical parameters (LAIPhotosynthetically active radiationGeostationary orbitGeneral Earth and Planetary SciencesEnvironmental sciencemeteosat second generation (MSG)SatelliteAlgorithmRemote Sensing; Volume 11; Issue 18; Pages: 2103
researchProduct

Estimación de la fAPAR sobre la Península Ibérica a partir de la inversión del modelo de transferencia radiativa 4SAIL2

2014

El objetivo de este trabajo consiste en la estimación de la fAPAR en la Península Ibérica a partir de datos MODIS. En primer lugar, se ha simulado un conjunto de datos de reflectividades y de fAPAR a partir de los modelos de transferencia radiativa de hoja (PROSPECT) y de cubiertas heterogéneas (4SAIL2). En segundo lugar, se ha entrenado un conjunto de redes neuronales artificiales (RNAs) para obtener mediante inversión la relación entre la fAPAR y las reflectividades simuladas y así calcular, por último, la fAPAR de la Península Ibérica a partir de imágenes de reflectividad de MODIS. Además, se ha analizado la influencia de la configuración de observación e iluminación, nadir y oblicua. La…

Geography4SAIL2Geography Planning and DevelopmentEarth and Planetary Sciences (miscellaneous)fAPARlcsh:G1-922HumanitiesCartographyinversiónlcsh:Geography (General)RNAsRevista de Teledetección
researchProduct