Search results for "faah"

showing 5 items of 5 documents

Differential diurnal variations of anandamide and 2-arachidonoyl-glycerol levels in rat brain.

2004

The endogenous ligands of cannabinoid receptors, also known as endocannabinoids, have been implicated in many physiological and pathological processes of the central nervous system. Here we show that the levels of the two major endocannabinoids, anandamide and 2-arachidonoyl-glycerol (2-AG), in four areas of the rat brain, change dramatically between the light and dark phases of the day. While anandamide levels in the nucleus accumbens, pre-frontal cortex, striatum and hippocampus were significantly higher in the dark phase, the opposite was observed with 2-AG, whose levels were significantly higher during the light phase in all four regions. We found that the activity of the fatty acid ami…

Malemedicine.medical_specialtyDiacylglycerol lipaseCannabinoid receptorPolyunsaturated Alkamidesmedicine.medical_treatmentPhotoperiod2-ArachidonoylglycerolArachidonic AcidsAmidohydrolasesGlyceridesRats Sprague-DawleyCellular and Molecular Neurosciencechemistry.chemical_compoundFatty acid amide hydrolaseInternal medicineCannabinoid Receptor ModulatorsmedicineanandamideAnimals2-arachidonoylglycerol; anandamide; cannabinoid; circadian; faahMolecular BiologyPharmacologybiologyBrainCell BiologyAnandamidefaahcannabinoidEndocannabinoid system2-arachidonoylglycerolCircadian RhythmRatsMonoacylglycerol lipaseEndocrinologycircadianchemistryBiochemistrybiology.proteinMolecular MedicineCannabinoidEndocannabinoidsCellular and molecular life sciences : CMLS
researchProduct

Antiepileptogenic Effect of Subchronic Palmitoylethanolamide Treatment in a Mouse Model of Acute Epilepsy

2018

Research on the antiepileptic effects of (endo-)cannabinoids has remarkably progressed in the years following the discovery of fundamental role of the endocannabinoid (eCB) system in controlling neural excitability. Moreover, an increasing number of well-documented cases of epilepsy patients exhibiting multi-drug resistance report beneficial effects of cannabis use. Pre-clinical and clinical research has increasingly focused on the antiepileptic effectiveness of exogenous administration of cannabinoids and/or pharmacologically induced increase of eCBs such as anandamide (also known as arachidonoylethanolamide [AEA]). Concomitant research has uncovered the contribution of neuroinflammatory p…

0301 basic medicinemedicine.medical_treatmentFAAH inhibitorsPharmacologyeicosanoidslcsh:RC321-57103 medical and health scienceschemistry.chemical_compoundEpilepsyCellular and Molecular Neuroscience0302 clinical medicineFatty acid amide hydrolaseMedicineantiepileptic drugsPentylenetetrazolendocannabinoidsMolecular Biologypalmitoylethanolamidelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchPalmitoylethanolamidebusiness.industryAnandamidemedicine.diseaseEndocannabinoid system030104 developmental biologyAnticonvulsantchemistryLC-MRMSystemic administrationlipidomicsepilepsybusiness030217 neurology & neurosurgerymedicine.drugNeuroscienceFrontiers in Molecular Neuroscience
researchProduct

Oral Palmitoylethanolamide Treatment Is Associated with Reduced Cutaneous Adverse Effects of Interferon-β1a and Circulating Proinflammatory Cytokines…

2016

Palmitoylethanolamide (PEA) is an endogenous lipid mediator known to reduce pain and inflammation. However, only limited clinical studies have evaluated the effects of PEA in neuroinflammatory and neurodegenerative diseases. Multiple sclerosis (MS) is a chronic autoimmune and inflammatory disease of the central nervous system. Although subcutaneous administration of interferon (IFN)-β1a is approved as first-line therapy for the treatment of relapsing–remitting MS (RR-MS), its commonly reported adverse events (AEs) such as pain, myalgia, and erythema at the injection site, deeply affect the quality of life (QoL) of patients with MS. In this randomized, double-blind, placebo-controlled study,…

Male0301 basic medicinemyalgiaErythemaAnti-Inflammatory AgentsPalmitic AcidAdministration OralPharmacologyGastroenterologychemistry.chemical_compound0302 clinical medicineNeuroinflammationFAAHEthanolaminePharmacology (medical)SkinInterleukin-17food and beveragesAnti-Inflammatory AgentTolerabilityEthanolaminesDisease ProgressionCytokinesOriginal ArticleFemalemedicine.symptomInterferon beta-1aHumanAdultmedicine.medical_specialtyPainPalmitic AcidsProinflammatory cytokineInterferon-gamma03 medical and health sciencesMultiple Sclerosis Relapsing-RemittingDouble-Blind MethodInternal medicinemedicineHumansAdverse effectCytokinePharmacologyPalmitoylethanolamideExpanded Disability Status ScaleTumor Necrosis Factor-alphabusiness.industryMultiple sclerosisN-acylethanolamineOleoylethanolamideAnandamideNAAAmedicine.diseaseAmides030104 developmental biologychemistryNeurology (clinical)business030217 neurology & neurosurgeryNeurotherapeutics
researchProduct

Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon

2007

Colorectal cancer is an increasingly important cause of death in Western countries. Endocannabinoids inhibit colorectal carcinoma cell proliferation in vitro. In this paper, we investigated the involvement of endocannabinoids on the formation of aberrant crypt foci (ACF, earliest preneoplastic lesions) in the colon mouse in vivo. ACF were induced by azoxymethane (AOM); fatty acid amide hydrolase (FAAH) and cannabinoid receptor messenger ribonucleic acid (mRNA) levels were analyzed by the quantitative reverse transcription polymerase chain reaction (RT-PCR); endocannabinoid levels were measured by liquid chromatography-mass spectrometry; caspase-3 and caspase-9 expressions were measured by W…

Cannabinoid receptormedicine.medical_treatment2-Arachidonoylglycerolpreneoplastic lesionsMass Spectrometrychemistry.chemical_compoundMice0302 clinical medicineFatty acid amide hydrolaseDrug DiscoveryFatty acid amide hydrolase (FAAH)Aberrant crypt fociGenetics(clinical)ReceptorReceptors CannabinoidGenetics (clinical)Medicine(all)0303 health sciencesCaspase 3Reverse Transcriptase Polymerase Chain ReactionEndocannabinoid systemCaspase 93. Good health2-arachidonoylglycerolColon cancer030220 oncology & carcinogenesisColonic NeoplasmsMolecular Medicinelipids (amino acids peptides and proteins)psychological phenomena and processesRapid CommunicationAberrant crypt focimedicine.medical_specialtyColonAzoxymethaneBiologydigestive systemAmidohydrolases03 medical and health sciencesInternal medicineCannabinoid Receptor ModulatorsmedicineAnimalsRNA MessengerCannabinoid receptors030304 developmental biologyAzoxymethaneendocannabinoiddigestive system diseasesEndocrinologychemistrynervous systemCancer researchCannabinoidcancer pharmacologyPrecancerous ConditionsEndocannabinoids
researchProduct

Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothal…

2015

Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3(+) or BrdU(+) cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3(+)), astroglia (GFAP(+)), and microglia (Iba1(+) cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamine…

AstrocitosNeurobiologia del desenvolupamentAmidohidrolasasCannabinoid receptorCarbamatos:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Intracellular Signaling Peptides and Proteins::Apoptosis Regulatory Proteins::Caspases [Medical Subject Headings]:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Differentiation::Neurogenesis [Medical Subject Headings]medicine.medical_treatment:Chemicals and Drugs::Carbohydrates::Monosaccharides::Hexoses::Glucose [Medical Subject Headings]Apoptosis:Phenomena and Processes::Physiological Phenomena::Body Constitution::Body Weights and Measures::Body Size::Body Weight [Medical Subject Headings]chemistry.chemical_compound:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Membrane Proteins::Receptors Cell Surface::Receptors G-Protein-Coupled::Receptors Cannabinoid::Receptor Cannabinoid CB1 [Medical Subject Headings]0302 clinical medicine:Chemicals and Drugs::Organic Chemicals::Carboxylic Acids::Acids Acyclic::Carbamates [Medical Subject Headings]Fatty acid amide hydrolaseReceptor cannabinoide CB1:Organisms::Eukaryota::Animals [Medical Subject Headings]FAAHGliosishealth care economics and organizations:Chemicals and Drugs::Nucleic Acids Nucleotides and Nucleosides::Nucleosides::Deoxyribonucleosides::Deoxyuridine::Bromodeoxyuridine [Medical Subject Headings]:Chemicals and Drugs::Lipids::Glycerides::Triglycerides [Medical Subject Headings]Original Research0303 health sciencesNeurogenesisBenzamidas:Chemicals and Drugs::Polycyclic Compounds::Steroids::Cholestanes::Cholestenes::Cholesterol [Medical Subject Headings]Endocannabinoid systemEtanolaminas3. Good healthEndocannabinoides:Chemicals and Drugs::Lipids::Fatty Acids::Fatty Acids Unsaturated::Fatty Acids Monounsaturated::Oleic Acids [Medical Subject Headings]CannabinoidesMicroglíalipids (amino acids peptides and proteins)medicine.symptomColesterol:Chemicals and Drugs::Organic Chemicals::Hydrocarbons::Terpenes::Cannabinoids [Medical Subject Headings]:Chemicals and Drugs::Lipids::Fatty Acids::Palmitic Acids [Medical Subject Headings]psychological phenomena and processesProliferación celularmedicine.medical_specialtyCerebroNeurogenesiseducationBiologyBromodesoxiuridina:Anatomy::Nervous System::Neuroglia::Microglia [Medical Subject Headings]Triglicéridoslcsh:RC321-571Ácidos oléicosRatas03 medical and health sciencesCellular and Molecular NeuroscienceInternal medicineHipocampomedicineCaspasa 3:Anatomy::Nervous System::Central Nervous System::Brain::Limbic System::Hippocampus [Medical Subject Headings]:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Growth Processes::Cell Proliferation [Medical Subject Headings]lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biologyPalmitoylethanolamide:Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Molecular Mechanisms of Pharmacological Action::Neurotransmitter Agents::Endocannabinoids [Medical Subject Headings]:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Hydrolases::Amidohydrolases [Medical Subject Headings]Cannabinoids:Anatomy::Cells::Neuroglia::Astrocytes [Medical Subject Headings]Peso corporalEnergy metabolism:Anatomy::Nervous System::Central Nervous System::Brain [Medical Subject Headings]:Anatomy::Nervous System::Central Nervous System::Brain::Limbic System::Hypothalamus [Medical Subject Headings]URB597:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Death [Medical Subject Headings]:Diseases::Pathological Conditions Signs and Symptoms::Pathologic Processes::Gliosis [Medical Subject Headings]:Chemicals and Drugs::Organic Chemicals::Amines::Amino Alcohols::Ethanolamines [Medical Subject Headings]Muerte celular:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Death::Apoptosis [Medical Subject Headings]:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Rodentia::Muridae::Murinae::Rats [Medical Subject Headings]EndocrinologyURB597chemistryGliosisnervous systemGlucosaCannabinoidEnergy Metabolism:Chemicals and Drugs::Organic Chemicals::Amides::Benzamides [Medical Subject Headings]HipotálamoÁcidos palmíticos030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct