Search results for "field potential"
showing 10 items of 37 documents
An Intracortical Implantable Brain-Computer Interface for Telemetric Real-Time Recording and Manipulation of Neuronal Circuits for Closed-Loop Interv…
2021
Recording and manipulating neuronal ensemble activity is a key requirement in advanced neuromodulatory and behavior studies. Devices capable of both recording and manipulating neuronal activity brain-computer interfaces (BCIs) should ideally operate un-tethered and allow chronic longitudinal manipulations in the freely moving animal. In this study, we designed a new intracortical BCI feasible of telemetric recording and stimulating local gray and white matter of visual neural circuit after irradiation exposure. To increase the translational reliance, we put forward a Göttingen minipig model. The animal was stereotactically irradiated at the level of the visual cortex upon defining the targe…
Theta and gamma oscillations in the rat hippocampus during attentive lever pressing
2018
AbstractThe hippocampus is known to be pivotal for spatial memory but emerging evidence suggests its contribution to temporal memories as well. However, it is not clear how the hippocampus represents time and how it synchronizes spatial and temporal presentations into a coherent memory. We assessed the specific role of hippocampal theta and gamma oscillations and their interaction in short-term timing of motor reactions. Rats were trained to maintain lever pressing for 2.5 s and then to quickly release the lever and retrieve water reward from a nearby water port guided by a cue light. In essence, this task allows observation of hippocampal rhythms during timed anticipation when no overt mov…
Neuroimaging and electrophysiology meet invasive neurostimulation for causal interrogations and modulations of brain states.
2020
Deep brain stimulation (DBS) has developed over the last twenty years into a highly effective evidenced-based treatment option for neuropsychiatric disorders. Moreover, it has become a fascinating tool to provide illustrative insights into the functioning of brain networks. New anatomical and pathophysiological models of DBS action have accelerated our understanding of neurological and psychiatric disorders and brain functioning. The description of the brain networks arose through the unique ability to illustrate long-range interactions between interconnected brain regions as derived from state-of-the-art neuroimaging (structural, diffusion, and functional MRI) and the opportunity to record…
EEG and MEG primers for tracking DBS network effects
2020
Deep brain stimulation (DBS) is an effective treatment method for a range of neurological and psychiatric disorders. It involves implantation of stimulating electrodes in a precisely guided fashion into subcortical structures and, at a later stage, chronic stimulation of these structures with an implantable pulse generator. While the DBS surgery makes it possible to both record brain activity and stimulate parts of the brain that are difficult to reach with non-invasive techniques, electroencephalography (EEG) and magnetoencephalography (MEG) provide complementary information from other brain areas, which can be used to characterize brain networks targeted through DBS. This requires, howeve…
Electrophysiological evidence for change detection in speech sound patterns by anesthetized rats
2014
Human infants are able to detect changes in grammatical rules in a speech sound stream. Here, we tested whether rats have a comparable ability by using an electrophysiological measure that has been shown to reflect higher order auditory cognition even before it becomes manifested in behavioral level. Urethane-anesthetized rats were presented with a stream of sequences consisting of three pseudowords carried out at a fast pace. Frequently presented “standard” sequences had 16 variants which all had the same structure. They were occasionally replaced by acoustically novel “deviant” sequences of two different types: structurally consistent and inconsistent sequences. Two stimulus conditions we…
Effects of Hippocampal State-Contingent Trial Presentation on Hippocampus-Dependent Nonspatial Classical Conditioning and Extinction
2014
Hippocampal local field potentials are characterized by two mutually exclusive states: one characterized by regular θ oscillations (∼4–8 Hz) and the other by irregular sharp-wave ripples. Presenting stimuli during dominant θ oscillations leads to expedited learning, suggesting that θ indexes a state in which encoding is most effective. However, ripple-contingent training also expedites learning, suggesting that any discrete brain state, much like the external context, can affect learning. We trained adult rabbits in trace eyeblink conditioning, a hippocampus-dependent nonspatial task, followed by extinction. Trials were delivered either in the presence or absence of θ or regardless of hippo…
Reduced firing rates of pyramidal cells in the frontal cortex of APP/PS1 can be restored by acute treatment with levetiracetam
2020
Contains fulltext : 229488.pdf (Publisher’s version ) (Open Access) Contains fulltext : 229488pre.pdf (Author’s version preprint ) (Open Access) In recent years, aberrant neural oscillations in various cortical areas have emerged as a common physiological hallmark across mouse models of amyloid pathology and patients with Alzheimer's disease. However, much less is known about the underlying effect of amyloid pathology on single cell activity. Here, we used high-density silicon probe recordings from frontal cortex area of 9-month-old APP/PS1 mice to show that local field potential power in the theta and beta band is increased in transgenic animals, whereas single-cell firing rates, specifica…
Phencyclidine inhibits the activity of thalamic reticular gamma-aminobutyric acidergic neurons in rat brain.
2014
Póster presentado en el IX Simposi de Neurobiologia Experimental, celebrado los días 22 y 23 de octubre de 2014 en Barcelona y organizado por la Societat Catalana de Biologia del Institut d'Estudis Catalans
Characterization of oscillatory changes in hippocampus and amygdala after deep brain stimulation of the infralimbic prefrontal cortex
2016
Deep brain stimulation (DBS) is a new investigational therapy that has generated positive results in refractory depression. Although the neurochemical and behavioral effects of DBS have been examined, less attention has been paid to the influence of DBS on the network dynamics between different brain areas, which could contribute to its therapeutic effects. Herein, we set out to identify the effects of 1 h DBS in the infralimbic cortex (IL) on the oscillatory network dynamics between hippocampus and basolateral amygdala (BLA), two regions implicated in depression and its treatment. Urethane-anesthetized rats with bilaterally implanted electrodes in the IL were exposed to 1 h constant stimul…
Memory-Based Mismatch Response to Frequency Changes in Rats
2011
Any occasional changes in the acoustic environment are of potential importance for survival. In humans, the preattentive detection of such changes generates the mismatch negativity (MMN) component of event-related brain potentials. MMN is elicited to rare changes (‘deviants’) in a series of otherwise regularly repeating stimuli (‘standards’). Deviant stimuli are detected on the basis of a neural comparison process between the input from the current stimulus and the sensory memory trace of the standard stimuli. It is, however, unclear to what extent animals show a similar comparison process in response to auditory changes. To resolve this issue, epidural potentials were recorded above the pr…