Search results for "finite difference"
showing 10 items of 122 documents
Time-harmonic solution for acousto-elastic interaction with controllability and spectral elements
2010
The classical way of solving the time-harmonic linear acousto-elastic wave problem is to discretize the equations with finite elements or finite differences. This approach leads to large-scale indefinite complex-valued linear systems. For these kinds of systems, it is difficult to construct efficient iterative solution methods. That is why we use an alternative approach and solve the time-harmonic problem by controlling the solution of the corresponding time dependent wave equation. In this paper, we use an unsymmetric formulation, where fluid-structure interaction is modeled as a coupling between pressure and displacement. The coupled problem is discretized in space domain with spectral el…
EXPERIMENTAL VALIDATION OF A FINITE DIFFERENCES TROMBE WALL MODEL
1983
ABSTRACT The paper describes a finite differences Trombe wall model validation, based on experimental data recorded at a passive systems test station in Central Italy. The computer code has been checked step by step, due to the different reliability of the data and to the various algorithms used in the code. Thus, cloudy and clear nights with no thermocirculation were simulated and compared with experimental data, then evening hours with thermocirculation, but no sun and, finally, a full day was simulated and compared. Some inaccuracy has been found in the simulation of wind effect on outer glass convective heat transfer coefficient. The code, however, has been found to provide data in reas…
Generalization of a finite-difference numerical method for the steady-state and transient solutions of the nernst—planck flux equations
1985
Abstract A generalization of the numerical method of Brumleve and Buck for the solution of Nernst—Planck equations when convective flux and electric current are involved has been developed. The simulation procedure was applied to a specific case: transport of strong electrolytes in a wide-pore membrane with simultaneous diffusion, convection and electric current. Good agreement was found between experimental data and computed results.
Anharmonic force fields from analytic CCSD(T) second derivatives: HOF and F2O
1999
The recent implementation of analytic second derivatives for CCSD(T) (coupled cluster theory with single and double excitations augmented by a perturbational treatment of connected triple excitations) has been combined with a numerical finite difference procedure to calculate cubic and semidiagonal quartic force fields. Computational details of this approach are outlined. Applications are reported for HOF and F2O. The CCSD(T) results are in excellent agreement with experiment and represent a substantial improvement over the results obtained from MP2 (Mo/ller–Plesset second-order perturbation theory).
Generalized finite difference schemes with higher order Whitney forms
2021
Finite difference kind of schemes are popular in approximating wave propagation problems in finite dimensional spaces. While Yee’s original paper on the finite difference method is already from the sixties, mathematically there still remains questions which are not yet satisfactorily covered. In this paper, we address two issues of this kind. Firstly, in the literature Yee’s scheme is constructed separately for each particular type of wave problem. Here, we explicitly generalize the Yee scheme to a class of wave problems that covers at large physics field theories. For this we introduce Yee’s scheme for all problems of a class characterised on a Minkowski manifold by (i) a pair of first ord…
Weighted Extrapolation Techniques for Finite Difference Methods on Complex Domains with Cartesian Meshes
2016
The design of numerical boundary conditions in high order schemes is a challenging problem that has been tackled in different ways depending on the nature of the problem and the scheme used to solve it numerically. In this paper we propose a technique to extrapolate the information from the computational domain to ghost cells for schemes with structured Cartesian Meshes on complex domains. This technique is based on the application of Lagrange interpolation with weighted filters for the detection of discontinuities that permits a data dependent extrapolation, with high order at smooth regions and essentially non oscillatory properties near discontinuities. This paper is a sequel of Baeza et…
High Order in Space and Time Schemes Through an Approximate Lax-Wendroff Procedure
2017
This paper deals with the scheme proposed by the authors in Zorio, Baeza and Mulet (J Sci Comput 71(1):246–273, 2017). This scheme is an alternative to the techniques proposed in Qiu and Shu (SIAM J Sci Comput 24(6):2185–2198, 2003) to obtain high-order accurate schemes using Weighted Essentially Non Oscillatory finite differences and approximating the flux derivatives required by the Cauchy-Kovalevskaya procedure by simple centered finite differences. We analyse how errors in first-order terms near discontinuities propagate through both versions of the Cauchy-Kovalevskaya procedure. We propose a fluctuation control, for which the approximation of the first-order derivative to be used in th…
A Mesh-free Particle Method for Transient Full-wave Simulation
2007
A mesh-free particle method is presented for electromagnetic (EM) transient simulation. The basic idea is to obtain numerical solutions for the partial differential equations describing the EM problem in time domain, by using a set of particles, considered as spatial interpolation points of the field variables, arbitrarily placed in the problem domain and by avoiding the use of a regular mesh. Irregular problems geometry with diffused non-homogeneous media can be modeled only with an initial set of arbitrarily distributed particles. The time dependence is accounted for with an explicit finite difference scheme. Moreover the particle discretization can be improved during the process time ste…
Controllability method for acoustic scattering with spectral elements
2007
We formulate the Helmholtz equation as an exact controllability problem for the time-dependent wave equation. The problem is then discretized in time domain with central finite difference scheme and in space domain with spectral elements. This approach leads to high accuracy in spatial discretization. Moreover, the spectral element method results in diagonal mass matrices, which makes the time integration of the wave equation highly efficient. After discretization, the exact controllability problem is reformulated as a least-squares problem, which is solved by the conjugate gradient method. We illustrate the method with some numerical experiments, which demonstrate the significant improveme…
High Order Compact Finite Difference Schemes for A Nonlinear Black-Scholes Equation
2001
A nonlinear Black-Scholes equation which models transaction costs arising in the hedging of portfolios is discretized semi-implicitly using high order compact finite difference schemes. A new compact scheme, generalizing the compact schemes of Rigal [29], is derived and proved to be unconditionally stable and non-oscillatory. The numerical results are compared to standard finite difference schemes. It turns out that the compact schemes have very satisfying stability and non-oscillatory properties and are generally more efficient than the considered classical schemes.