Search results for "floodplains"

showing 2 items of 2 documents

High Prevalence of Human-Associated Escherichia coli in Wetlands Located in Eastern France

2020

International audience; Escherichia coli that are present in the rivers are mostly brought by human and animal feces. Contamination occurs mostly through wastewater treatment plant (WWTP) outflows and field amendment with sewage sludge or manure. However, the survival of these isolates in river-associated wetlands remains unknown. Here, we assessed E. coli population structure in low-anthropized wetlands located along three floodplains to identify the major source of contamination of wetlands, whose functioning is different from the rivers. We retrieved 179 E. coli in water samples collected monthly from 19 sites located in eastern France over 1 year. Phylogroups B1 and B2 were dominant in …

Microbiology (medical)Veterinary medicinePopulationlcsh:QR1-502WetlandBiologymedicine.disease_causeMicrobiologylcsh:Microbiologywetlandshuman-associated E. coli03 medical and health sciencesmedicineeducationEscherichia coliwastewater treatment plant030304 developmental biology[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health scienceseducation.field_of_studygeographygeography.geographical_feature_categoryPhylogenetic tree030306 microbiologyE. colifood and beveragesContaminationManure6. Clean water[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyfloodplainsSewage treatmentSludge
researchProduct

The FLO Diffusive 1D-2D Model for Simulation of River Flooding

2016

An integrated 1D-2D model for the solution of the diffusive approximation of the shallow water equations, named FLO, is proposed in the present paper. Governing equations are solved using the MArching in Space and Time (MAST) approach. The 2D floodplain domain is discretized using a triangular mesh, and standard river sections are used for modeling 1D flow inside the section width occurring with low or standard discharges. 1D elements, inside the 1D domain, are quadrilaterals bounded by the trace of two consecutive sections and by the sides connecting their extreme points. The water level is assumed to vary linearly inside each quadrilateral along the flow direction, but to remain constant …

floodplainlcsh:Hydraulic engineering010504 meteorology & atmospheric sciencesDiscretization0208 environmental biotechnologyGeography Planning and DevelopmentGeometry02 engineering and technologyAquatic ScienceClassification of discontinuities01 natural sciencesBiochemistry1D-2D couplingSettore ICAR/01 - Idraulicalcsh:Water supply for domestic and industrial purposeslcsh:TC1-978Triangle meshBoundary value problemExtreme pointShallow water equations0105 earth and related environmental sciencesWater Science and TechnologyPhysicsHydrologylcsh:TD201-500Quadrilateralshallow water equationsNumerical analysisnumerical method020801 environmental engineeringmain channelfloodplains1D-2D coupling; floodplains; main channel; numerical method; shallow water equationsWater; Volume 8; Issue 5; Pages: 200
researchProduct