Search results for "floquet-bloch"

showing 2 items of 2 documents

How Circular Dichroism in Time- and Angle-Resolved Photoemission Can Be Used to Spectroscopically Detect Transient Topological States in Graphene

2020

Pumping graphene with circularly polarized light is the archetype of light-tailoring topological bands. Realizing the induced Floquet-Chern-insulator state and demonstrating clear experimental evidence for its topological nature has been a challenge, and it has become clear that scattering effects play a crucial role. We tackle this gap between theory and experiment by employing microscopic quantum kinetic calculations including realistic electron-electron and electron-phonon scattering. Our theory provides a direct link to the build up of the Floquet-Chern-insulator state in light-driven graphene and its detection in time- and angle-resolved photoemission spectroscopy (ARPES). This approac…

EngineeringtopologyQC1-999Floquet engineeringFOS: Physical sciencesGeneral Physics and AstronomyLibrary sciencespin53001 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasCondensed Matter - Strongly Correlated Electrons0103 physical sciencesddc:530floquet-bloch010306 general physicsdrivenCondensed Matter - Materials ScienceStrongly Correlated Electrons (cond-mat.str-el)tr-ARPESbusiness.industryPhysicsEuropean researchMaterials Science (cond-mat.mtrl-sci)dissipationCondensed Matter::Strongly Correlated ElectronsbusinessPhysical Review X
researchProduct

Survival of Floquet–Bloch States in the Presence of Scattering

2021

Floquet theory has spawned many exciting possibilities for electronic structure control with light, with enormous potential for future applications. The experimental demonstration in solids, however, remains largely unrealized. In particular, the influence of scattering on the formation of Floquet-Bloch states remains poorly understood. Here we combine time- and angle-resolved photoemission spectroscopy with time-dependent density functional theory and a two-level model with relaxation to investigate the survival of Floquet-Bloch states in the presence of scattering. We find that Floquet-Bloch states will be destroyed if scattering-activated by electronic excitations-prevents the Bloch elec…

Floquet theoryLetterField (physics)BioengineeringElectrons02 engineering and technologyElectronElectronic structureSettore FIS/03 - Fisica Della Materiadriven two-level system with dissipationGeneral Materials ScienceFloquet−Bloch statesPhysicsScatteringMechanical EngineeringRelaxation (NMR)General ChemistryTime-dependent density functional theorydissipation021001 nanoscience & nanotechnologyCondensed Matter Physicstime and angle-resolved photoemission spectroscopy3. Good healthFloquet-Bloch statestime-dependent density functional theoryFloquetBloch statesQuantum electrodynamicsddc:660Density functional theory0210 nano-technologytime- and angle-resolved photoemission spectroscopyNano Letters
researchProduct