Search results for "flow rate"
showing 10 items of 166 documents
A reaction engineering approach to kinetic analysis of photocatalytic reactions in slurry systems
2016
Abstract The knowledge of the rate equation is fundamental for the assessment of the activity of the photocatalytic material and for the study, design and optimization of photocatalytic reactors. In the case of photocatalytic reactions, the local volumetric rate of photon absorption (LVRPA) affects the reaction rate and its inherently uneven distribution within a “slurry” reactor makes complex a correct kinetic analysis. In the present work it is shown which are the critical aspects of the kinetic analysis in slurry reactors and how to carry out photocatalytic experiments to minimize the misinterpretations of the experimental results. In particular, the influence of the type of illumination…
Source shape and data analysis procedure effects on hydraulic conductivity of a sandy-loam soil determined by ponding infiltration runs
2017
Performing ponding infiltration runs with non-circular sources could represent a good means to sample completely an area of interest. Regardless of the shape of the source, predicting the expected reliability of the collected data by infiltrometers should facilitate soil hydraulic characterisation and also allow a more conscious use of the field data. The influence of the shape of the infiltration source (i.e., circular or square) and the analysis procedure of the steady-state infiltration data on the saturated hydraulic conductivity, Ks, of a sandy-loam soil was tested in this investigation. Circular and square surfaces sampled with the pressure infiltrometer (PI) yielded similar estimates…
Extensive Evaluation of a Diffusion Denuder Technique for the Quantification of Atmospheric Stable and Radioactive Molecular Iodine
2010
In this paper we present the evaluation and optimization of a new approach for the quantification of gaseous molecular iodine (I(2)) for laboratory- and field-based studies and its novel application for the measurement of radioactive molecular iodine. alpha-Cyclodextrin (alpha-CD) in combination with (129)I(-) is shown to be an effective denuder coating for the sampling of gaseous I(2) by the formation of an inclusion complex. The entrapped (127)I(2) together with the (129)I(-) spike in the coating is then released and derivatized to 4-iodo-N,N-dimethylaniline (4-I-DMA) for gas chromatography-mass spectrometry (GC-MS) analysis. The (127)I(2) collected can be differentiated from the (129)I(-…
Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery
2018
Abstract This work presents the evaluation of an innovative system based on vacuum multi-effect membrane distillation modules (V-MEMD) for seawater desalination at pilot scale. This four-effect unit introduces a remarkable modification from previous V-MEMD systems, consisting of the use of the seawater feed flow as cooling in the condenser, rather than a separate circuit. Preheating the feed in the condenser improved heat efficiency (maximum gained output ratio obtained for seawater was 3.2). Maximum distillate fluxes reached 8.5 l h−1 m−2 for hot feed temperature 75 °C and feed flow rate 150 l h−1. Increasing both parameters to raise the productivity was hindered by the inability of the co…
Synthesis of Hyperbranched Polyglycerol in a Continuous Flow Microreactor
2007
Hyperbranched polymers have been synthesized in a microreactor for the first time, employing the known ring-opening multibranching polymerization of glycidol. Microreactors are well-known to be beneficial for highly exothermic reactions because of their capability to enhance mass and heat transfer due to short diffusion pathways and large interfacial areas per volume. The characteristics of the microstructured reaction system were utilized to engineer a continuous flow process for the preparation of well-defined hyperbranched polyglycerols with molecular weights up to 1,000 g/mol. Increased flow rates, as well as the use of highly polar solvents, led to the partial formation of very narrowl…
Effect of stress and temperature on the thermomechanical degradation of a PE-LD/OMMT nanocomposites
2014
Thermomechanical degradation of nanocomposites is a topical issue that has not been fully investigated as demonstrated by the low number of papers available in the literature regarding this spe- cific aspect. In particular, with regards to low density polyethylene/clay nanocomposites, the degrada- tion behavior is very complex since it involves the degradation paths of both the polymer matrix and the organomodified nanoclay. In the present work, the effects of mechanical stress and temperature on the thermomechanical behavior of PE-LD/organomodified clay nanocomposites and the degradation paths were investigated by rheological, FT-IR and mechanical methods. The results have shown that the t…
Simulating Copolymeric Nanoparticle Assembly in the Co-solvent Method: How Mixing Rates Control Final Particle Sizes and Morphologies
2018
Abstract The self-assembly of copolymeric vesicles and micelles in micromixers is studied by External Potential Dynamics (EPD) simulations – a dynamic density functional approach that explicitly accounts for the polymer architecture both at the level of thermodynamics and dynamics. Specifically, we focus on the co-solvent method, where nanoparticle precipitation is triggered by mixing a poor co-solvent into a homogeneous copolymer solution in a micromixer. Experimentally, it has been reported that the flow rate in the micromixers influences the size of the resulting particles as well as their morphology: At small flow rates, vesicles dominate; with increasing flow rate, more and more micell…
Removal of TEX vapours from air in a peat biofilter: influence of inlet concentration and inlet load
2006
This paper presents the results of the study of the removal of toluene, ethylbenzene, and o-xylene (TEX) by biofiltration using a commercial peat as filter-bed material. Runs with a single organic compound in air, and with the mixture of TEX in air, were carried out for at least 55 days in laboratory-scale reactors inoculated with a conditioned culture. The influence of organic compound inlet load and of gas flow rate on the biofilter's performance was studied, including relatively high values of pollutant inlet concentration (up to 4.3 gC m−3 for ethylbenzene, 3.2 gC m−3 for toluene, and 2.7 gC m−3 for o-xylene). Results obtained show maximum elimination capacities of 65 gC m−3 h−1 for o-x…
Analysis of gate freeze-off time in injection molding
2004
Gate solidification time is an important topic in injection molding technology, as it determines cycle time, which itself is an important issue in the economics of the production process. In this work, a study of the effect of both gate and cavity geometries on gate solidification time was conducted, using a commercial polymer, injection molded with constant holding pressure into a rectangular cavity. Three cavity lengths were used, and for each, two cavity thicknesses were adopted. Spe- cial dies containing different gates were assembled in the mold. Gate thickness was found to be the most important factor determining gate sealing time. However, the cavity geometry is also quite important.…
Ozone absorption in aqueous phenol solutions
1977
Abstract The rate of ozone absorption in aqueous solutions of phenol was measured in a wetted-wall laboratory absorber. The liquid and gas flow rates were fixed as well as the pH and temperature. The phenol concentration was varied in the range 2–300 ppm and the ozone partial pressure over an eight fold range. The gas phase resistance to mass transfer was determined by absorbing SO2 from an SO2N2 mixture in KOH aqueous solutions. The results have been interpreted by means of a simple kinetic assumption.