Search results for "flux"

showing 10 items of 1392 documents

New advances in dial-lidar-based remote sensing of the volcanic CO2 flux

2017

We report here on the results of a proof-of-concept study aimed at remotely sensing the volcanic CO2 flux using a Differential Adsorption lidar (DIAL-lidar). The observations we report on were conducted on June 2014 on Stromboli volcano, where our lidar (LIght Detection And Ranging) was used to scan the volcanic plume from ~ 3 km distance from the summit vents. The obtained results prove that a remotely operating lidar can resolve a volcanic CO2 signal of a few tens of ppm (in excess to background air) over km-long optical paths. We combine these results with independent estimates of plume transport speed (from processing of UV Camera images) to derive volcanic CO2 flux time-series of ≈16-3…

010504 meteorology & atmospheric sciences2010502 geochemistry & geophysics01 natural sciencesDIAL-lidarVolcanic COEarth Sciencevolcanic CO2Stromboli0105 earth and related environmental sciencesRemote sensinggeographygeography.geographical_feature_categoryCo2 fluxRangingRemote sensingPlumeDialCOfluxLidarVolcano13. Climate actionRemote sensing (archaeology)Temporal resolutionGeneral Earth and Planetary SciencesEnvironmental scienceCO2 flux
researchProduct

Understanding the SO 2 degassing budget of Mt Etna’s paroxysms: First clues from the december 2015 sequence

2019

The persistent open-vent activity of basaltic volcanoes is periodically interrupted by spectacular but hazardous paroxysmal explosions. The rapid transition from quiescence to explosive eruption poses a significant challenge for volcanic hazard assessment and mitigation, and improving our understanding of the processes that trigger these paroxysmal events is critical. Although magmatic gas is unquestionably the driver, direct measurements of a paroxysm’s gas flux budget have remained challenging, to date. A particularly violent paroxysmal sequence took place on Etna on December 2015, intermittently involving all summit craters, especially the Voragine (VOR) that had previously displayed no…

010504 meteorology & atmospheric sciences2Earth and Planetary Sciences(all)UV camera010502 geochemistry & geophysics01 natural sciencesSequence (geology)Basaltic paroxysmsImpact craterBasaltic paroxysms; Etna; OMI; Thermal remote sensing; UV camera; Volcanic SO ; 2High spatial resolutionlcsh:ScienceThermal remote sensing0105 earth and related environmental sciences/dk/atira/pure/subjectarea/asjc/1900BasaltVolcanic SOgeographygeography.geographical_feature_categoryOMIGas fluxBasaltic paroxysmEtna volcanoVolcanoMagmavolcanic SO2General Earth and Planetary SciencesEtnalcsh:QSeismologyGeology
researchProduct

Three X-ray Flares Near Primary Eclipse of the RS CVn Binary XY UMa

2016

We report on an archival X-ray observation of the eclipsing RS CVn binary XY UMa ($\rm P_{orb}\approx$ 0.48d). In two $\emph{Chandra}$ ACIS observations spanning 200 ks and almost five orbital periods, three flares occurred. We find no evidence for eclipses in the X-ray flux. The flares took place around times of primary eclipse, with one flare occurring shortly ($<0.125\rm P_{orb}$) after a primary eclipse, and the other two happening shortly ($<0.05\rm P_{orb}$) before a primary eclipse. Two flares occurred within roughly one orbital period ($\Delta \phi\approx1.024\rm P_{orb}$) of each other. We analyze the light curve and spectra of the system, and investigate coronal length scales both…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxOrbital eccentricityAstrophysics01 natural scienceslaw.inventionOrb (astrology)Settore FIS/05 - Astronomia E AstrofisicalawPrimary (astronomy)0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysics0105 earth and related environmental sciencesEclipseHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsLight curveOrbital periodstars: binariesSpace and Planetary Sciencestars: flareAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFlare
researchProduct

IGR J17329-2731: The birth of a symbiotic X-ray binary

2018

We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7$^{+3.4}_{-1.2}$ kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680$\pm$3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption ($\gg$10$^{23}$ cm$^{-2}$) and prominent emission lines at 6.4 …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesFluxAstrophysicsCompact star01 natural sciencesSpectral linelaw.inventionTelescopeSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsAstronomy and AstrophysicLight curveX-rays: binarieNeutron starX-rays: individuals: IGR J17329-273113. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Strombolian eruptions and dynamics of magma degassing at Yasur Volcano (Vanuatu)

2020

Abstract Open vent basaltic volcanoes account for a substantial portion of the global atmospheric outgassing flux, largely through passive degassing and mild explosive activity. We present volcanic gas flux and composition data from Yasur Volcano, Vanuatu collected in July 2018. The average volcanic plume chemistry is characterised by a mean molar CO2/SO2 ratio of 2.14, H2O/SO2 of 148 and SO2/HCl of 1.02. The measured mean SO2 flux in the period of 6th to 9th July is 4.9 kg s−1. Therefore, the mean fluxes of the other species are 7.5 kg∙s−1 CO2, 208 kg∙s−1 H2O and 4.8 kg∙s−1 HCl. The degassing regime at Yasur volcano ranges from ‘passive’ to ‘active’ styles, with the latter including Stromb…

010504 meteorology & atmospheric sciencesBasaltic open vent volcanoessub-05Gas fluxes010502 geochemistry & geophysics01 natural sciencesStrombolian activityFlux (metallurgy)Geochemistry and PetrologyCrystal content in magmaPetrology0105 earth and related environmental sciencesBasaltgeographygeography.geographical_feature_categoryBasaltic open vent volcanoes Crystal content in magma Gas fluxes Magma fluxes Strombolian activity YasurStrombolian eruptionMagma fluxesOutgassingGeophysicsVolcanoVolcanic plumeMagmaInclusion (mineral)YasurGeology
researchProduct

A tale of two emergences: Sunrise II observations of emergence sites in a solar active region

2017

R. Centeno et. al.

010504 meteorology & atmospheric sciencesField (physics)photosphere [Sun]Field lineFOS: Physical sciencesFluxchromosphere [Sun]Astrophysicspolarimetric [Techniques]01 natural sciences0103 physical sciencesSunrise010303 astronomy & astrophysicsChromosphereSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSunspotsSun: chromosphereTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsMagnetic reconnectionMagnetic fluxMagnetic fieldmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science
researchProduct

Magnetic shuffling of coronal downdrafts

2017

Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have been recently addressed from an observation after a solar eruption. We study the possible back-effect of the magnetic field on the propagation of confined flows. We compare two 3D MHD simulations of dense supersonic plasma blobs downfalling along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned to the magnetic field and the field is weaker. The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merged by the chaotic shuffling of …

010504 meteorology & atmospheric sciencesField lineAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsSun:corona01 natural sciencesAlfvén waveSettore FIS/05 - Astronomia E AstrofisicaPhysics::Plasma Physics0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSolar flareAstronomy and AstrophysicsSun:activityPlasmaMagnetic fluxAccretion (astrophysics)Magnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamicsmagnetohydrodynamics
researchProduct

Changes in SO2 Flux Regime at Mt. Etna Captured by Automatically Processed Ultraviolet Camera Data

2019

We used a one-year long SO2 flux record, which was obtained using a novel algorithm for real-time automatic processing of ultraviolet (UV) camera data, to characterize changes in degassing dynamics at the Mt. Etna volcano in 2016. These SO2 flux records, when combined with independent thermal and seismic evidence, allowed for capturing switches in activity from paroxysmal explosive eruptions to quiescent degassing. We found SO2 fluxes 1.5&#8722;2 times higher than the 2016 average (1588 tons/day) during the Etna&#8217;s May 16&#8722;25 eruptive paroxysmal activity, and mild but detectable SO2 flux increases more than one month before its onset. The SO2 flux typically peaked during a lava fo…

010504 meteorology & atmospheric sciencesLava2SO<sub>2</sub> fluxesAutomatic processing010502 geochemistry & geophysicsAtmospheric sciencesmedicine.disease_causeUV Camerafluxe01 natural sciencesFlux (metallurgy)Thermalmedicinelcsh:Scienceexplosive basaltic volcanism0105 earth and related environmental sciencesSOExplosive eruptionEtna VolcanofluxesEtna volcanoGeneral Earth and Planetary Scienceslcsh:QEtna volcano; Explosive basaltic volcanism; SO; 2; fluxes; UV cameraGeologyUltravioletRemote Sensing
researchProduct

Sustaining persistent lava lakes: Observations from high-resolution gas measurements at Villarrica volcano, Chile

2016

International audience; Active lava lakes – as the exposed upper part of magmatic columns – are prime locations to investigate the conduit flow processes operating at active, degassing volcanoes. Persistent lava lakes require a constant influx of heat to sustain a molten state at the Earth's surface. Several mechanisms have been proposed to explain how such heat transfer can operate efficiently. These models make contrasting predictions with respect to the flow dynamics in volcanic conduits and should result in dissimilar volatile emissions at the surface. Here we look at high-frequency SO2 fluxes, plume composition, thermal emissions and aerial video footage from the Villarrica lava lake i…

010504 meteorology & atmospheric sciencesLavaEarth scienceUAVUV camera010502 geochemistry & geophysics01 natural sciencesElectrical conduitFlux (metallurgy)Geochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologyPetrologyGeophysic0105 earth and related environmental sciencesgeographyTrail By Firegeography.geographical_feature_categoryTrail ByLava domeFireconduit dynamicPlumeGeophysicsVolcano13. Climate actionSpace and Planetary ScienceGas slugMagmavolcanic degassingGeologyMulti-GAS
researchProduct

Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc

2016

Abstract Ambrym volcano, in the Vanuatu arc, is one of the most active volcanoes of the Southwest Pacific region, where persistent lava lake and/or Strombolian activity sustains voluminous gas plume emissions. Here we report on the first comprehensive budget for the discharge of major, minor, trace and radioactive volatile species from Ambrym volcano, as well as the first data for volatiles dissolved in its basaltic magma (olivine-hosted melt inclusions). In situ MultiGAS analysis of H 2 O, CO 2 , SO 2 and H 2 S in crater rim emissions, coupled with filter-pack determination of SO 2 , halogens, stable and radioactive metals demonstrates a common magmatic source for volcanic gases emitted by…

010504 meteorology & atmospheric sciencesLavaGeochemistryMineralogy[SDU.STU]Sciences of the Universe [physics]/Earth SciencesAmbrymVolatile fluxes010502 geochemistry & geophysics01 natural sciencesVolcanic GasesMagma reservoirVanuatuVolatile fluxeGeochemistry and PetrologyCalderaeventGeophysicComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesMelt inclusionsBasaltevent.disaster_typegeographygeography.geographical_feature_categoryMagma degassing budgetStrombolian eruptionGeophysicsVolcano13. Climate actionIsland arcRadioactive disequilibriaGeology
researchProduct