Search results for "folding"

showing 10 items of 330 documents

Polar/Ionizable Residues in Transmembrane Segments: Effects on Helix-Helix Packing

2012

The vast majority of membrane proteins are anchored to biological membranes through hydrophobic alpha-helices. Sequence analysis of high-resolution membrane protein structures show that ionizable amino acid residues are present in transmembrane (TM) helices, often with a functional and/or structural role. Here, using as scaffold the hydrophobic TM domain of the model membrane protein glycophorin A (GpA), we address the consequences of replacing specific residues by ionizable amino acids on TM helix insertion and packing, both in detergent micelles and in biological membranes. Our findings demonstrate that ionizable residues are stably inserted in hydrophobic environments, and tolerated in t…

Protein Foldinglcsh:MedicineBiochemistryBiotecnologiaProtein Structure SecondaryCell membraneGlycophorinsAmino Acidslcsh:ScienceMicelleschemistry.chemical_classificationMultidisciplinarybiologySodium Dodecyl SulfateLipidsTransmembrane proteinAmino acidmedicine.anatomical_structureBiochemistryCytochemistryThermodynamicsResearch ArticleProtein StructureBiophysicsCalcium-Transporting ATPasesProtein ChemistryProtein–protein interactionMembranes (Biologia)MicrosomesEscherichia colimedicineGlycophorinProtein InteractionsBiologyCell Membranelcsh:RMembrane ProteinsProteinsComputational BiologyBiological membraneIntracellular MembranesProtein Structure TertiaryTransmembrane ProteinsMembrane proteinchemistryHelixbiology.proteinBiophysicslcsh:QProtein Multimerization
researchProduct

Investigation of Phosphorylation-Induced Folding of an Intrinsically Disordered Protein by Coarse-Grained Molecular Dynamics

2021

Apart from being the most common mechanism of regulating protein function and transmitting signals throughout the cell, phosphorylation has an ability to induce disorder-to-order transition in an intrinsically disordered protein. In particular, it was shown that folding of the intrinsically disordered protein, eIF4E-binding protein isoform 2 (4E-BP2), can be induced by multisite phosphorylation. Here, the principles that govern the folding of phosphorylated 4E-BP2 (pT37pT46 4E-BP2(18–62)) are investigated by analyzing canonical and replica exchange molecular dynamics trajectories, generated with the coarse-grained united-residue force field, in terms of local and global motions and the time…

Protein isoformPhysicsProtein functionProtein Folding010304 chemical physicsMolecular Dynamics Simulation01 natural sciencesForce field (chemistry)ArticleComputer Science ApplicationsFolding (chemistry)Standing waveIntrinsically Disordered Proteinssymbols.namesakeMolecular dynamicsChemical physics0103 physical sciencessymbolsPhosphorylationThermodynamicsPhysical and Theoretical ChemistryPhosphorylationNonlinear Schrödinger equation
researchProduct

Human apolipoprotein A-I natural variants: molecular mechanisms underlying amyloidogenic propensity

2012

Human apolipoprotein A-I (apoA-I)-derived amyloidosis can present with either wild-type (Wt) protein deposits in atherosclerotic plaques or as a hereditary form in which apoA-I variants deposit causing multiple organ failure. More than 15 single amino acid replacement amyloidogenic apoA-I variants have been described, but the molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here, we have investigated by fluorescence and biochemical approaches the stabilities and propensities to aggregate of two disease-associated apoA-I variants, apoA-IGly26Arg, associated with polyneuropathy and kidney dysfunction, and apoA-ILys107-0, implicated in amyloidosis in severe…

ProteomicsProtein Foldinglcsh:MedicineProtein aggregationpolymyxinsBiochemistryProtein Structure SecondaryMiceProtein structureneutrophilsMolecular Cell Biologypolycyclic compoundslcsh:ScienceCellular Stress ResponsesMultidisciplinaryProtein StabilityAmyloidosisCiencias QuímicasfluorescenseCell biologymacrophagesBiochemistryToxicityMedicineProtein foldinglipids (amino acids peptides and proteins)medicine.symptomPolyneuropathyResearch ArticleProtein StructureMedicinaLipoproteinsImmunologyBiophysicsInflammationAmyloidogenic ProteinsBiologyProtein ChemistryMicrobiologyCell Lineprotein aggregationmacrophage activationmedicineAnimalsHumansoligomersProtein InteractionsBiologyInflammationamyloidosisApolipoprotein A-IMacrophageslcsh:RImmunityProteinsnutritional and metabolic diseasesmedicine.diseaseApolipoproteinsAmino Acid SubstitutionCell cultureinflammationCiencias Médicaslcsh:QClinical ImmunologyMutant ProteinspolyneuropathyProtein Multimerization
researchProduct

Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories : production of human alpha-gala…

2015

This work was supported by ERANET-IB08-007 project from the European Union and its linked national project EUI2008- 03610 to AV. We also appreciate the support from EME2007-08 to NFM from Universitat Autonoma de Barcelona, from Antartide 2010 to MLT and EP, from MIUR Azioni Integrate Italia-Spagna 2010 Prot. IT10LECLM9 to MLT, from MINECO (IT2009-0021) to AV and LT, from AGAUR (2009SGR-108) to AV. AV is also supported by The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, Spain), an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Car…

PseudoalteromonaRecombinant proteinExpression systemsFabry's diseaseHuman alpha-galactosidase AContext (language use)Computational biologyBiologymedicine.disease_causeApplied Microbiology and BiotechnologyMicrobiologyPseudoalteromonas haloplanktisGene expressionEnzyme StabilitymedicineProtein biosynthesisEscherichia coliHumansEscherichia coliGenePseudoalteromonas haloplanktis TAC125Expression systemGeneral Medicinebiology.organism_classificationRecombinant ProteinsPseudoalteromonasMembrane proteinFabry’s diseaseMetabolic Engineeringalpha-GalactosidaseProtein foldingBiotechnologyHuman
researchProduct

Mechanical unfolding pathway of a model β-peptide foldamer.

2015

Foldamers constructed from oligomers of β-peptides form stable secondary helix structures already for small chain lengths, which makes them ideal candidates for the investigation of the (un)folding of polypeptides. Here, the results of molecular simulations of the mechanical unfolding of a β-heptapeptide in methanol solvent revealing the detailed unfolding pathway are reported. The unfolding process is shown to proceed via a stable intermediate even for such a small system. This result is arrived at performing non-equilibrium force ramp simulations employing different pulling velocities and also using standard calculations of the potential of mean force, i.e., the free energy as a function …

Quantitative Biology::BiomoleculesChemistryMethanolEquilibrium unfoldingFoldamerGeneral Physics and AstronomyEnergy landscapeThermodynamicsHydrogen BondingMolecular Dynamics SimulationKinetic energyProtein Structure SecondaryFolding (chemistry)CrystallographyKineticsHelixSolventsPhysical and Theoretical ChemistryPotential of mean forceChemical equilibriumPeptidesProtein UnfoldingThe Journal of chemical physics
researchProduct

Analytical and Numerical Investigation of 3D Multilayer Detachment Folding

2013

Multilayer detachment folding, in which a sequence of sedimentary layers is compressed above a weaker salt layer, is a common mode of deformation in thin-skinned fold-and-thrust belts. Here, we investigate the dynamics of multilayer detachment folding with three different viscosities: lower detachment or salt layer, overlying weak layers and competent layers. A semi-analytical solution, based on thick plate analysis of multilayer systems, is used to create mechanical phase diagrams of folding dominant wavelength and growth rate as a function of material parameters. The validity of the phase diagrams is tested and confirmed beyond the nucleation stages of folding by performing several 2D and…

Quantitative Biology::BiomoleculesMaterials science010504 meteorology & atmospheric sciencesDeformation (mechanics)NucleationNumerical modelingGeometry010502 geochemistry & geophysics01 natural sciencesFolding (chemistry)Thick plateGrowth rateLayer (electronics)0105 earth and related environmental sciencesPhase diagramMathematics of Planet Earth
researchProduct

Modeling of the Halloysite Spiral Nanotube

2015

A computational SCC-DFTB investigation dealing with the structure of hydrated and anhydrous halloysite nanotubes with a spiral geometry is reported. The peculiar characteristics of these systems are described in terms of tetrahedral and octahedral distortions, of hydrogen bonds geometries involving water molecules and the surfaces in the hydrated nanotube, and of the interlayer interactions in the anhydrous one. When the properties of the spiral nanotube are compared with those of the kaolinite sheet, a certain degree of intrinsic disorder in the halloysite systems is revealed, due to the intrinsic nature of the spiral folding. This is particularly evident in the hydrogen bonds network occu…

Quantitative Biology::BiomoleculesNanotubeMaterials scienceHydrogen bondElectronic Optical and Magnetic MaterialInorganic chemistrySurfaces Coatings and Filmengineering.materialCondensed Matter::Mesoscopic Systems and Quantum Hall EffectHalloysiteSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsFolding (chemistry)Condensed Matter::Materials ScienceGeneral EnergyEnergy (all)OctahedronChemical physicsengineeringAnhydrousMoleculeKaolinitePhysics::Chemical PhysicsPhysical and Theoretical Chemistry
researchProduct

Solvent-induced free energy landscape and solute-solvent dynamic coupling in a multielement solute

1999

AbstractMolecular dynamics simulations using a simple multielement model solute with internal degrees of freedom and accounting for solvent-induced interactions to all orders in explicit water are reported. The potential energy landscape of the solute is flat in vacuo. However, the sole untruncated solvent-induced interactions between apolar (hydrophobic) and charged elements generate a rich landscape of potential of mean force exhibiting typical features of protein landscapes. Despite the simplicity of our solute, the depth of minima in this landscape is not far in size from free energies that stabilize protein conformations. Dynamical coupling between configurational switching of the syst…

Quantitative Biology::BiomoleculesProtein ConformationChemistryBiophysicsDegrees of freedom (physics and chemistry)ProteinsEnergy landscapeMolecular Dynamics SimulationSolventMolecular dynamicsCoupling (computer programming)Chemical physicsComputational chemistrySolventsThermodynamicsProtein foldingPotential of mean forceHydrophobic and Hydrophilic InteractionsOrder of magnitudeResearch Article
researchProduct

Effective approach for calculations of absolute stability of proteins using focused dielectric constants

2009

The ability to predict the absolute stability of proteins based on their corresponding sequence and structure is a problem of great fundamental and practical importance. In this work, we report an extensive, refinement and validation of our recent approach (Roca et al., FEBS Lett 2007;581:2065-2071) for predicting absolute values of protein stability DeltaG(fold). This approach employs the semimacroscopic protein dipole Langevin dipole method in its linear response approximation version (PDLD/S-LRA) while using the best fitted values of the dielectric constants epsilon'(p) and epsilon'(eff) for the self energy and charge-charge interactions, respectively. The method is validated on a divers…

Quantitative Biology::BiomoleculesWork (thermodynamics)ChemistryThermodynamicsDielectricBiochemistryDipoleProtein stabilityProtein structureStructural BiologyComputational chemistryStatic electricityProtein foldingAbsolute stabilityMolecular BiologyProteins: Structure, Function, and Bioinformatics
researchProduct

New set of 2D/3D thermodynamic indices for proteins. A formalism based on "Molten Globule" theory

2010

Abstract We define eight new macromolecular indices, and several related descriptors for proteins. The coarse grained methodology used for its deduction ensures its fast execution and becomes a powerful potential tool to explore large databases of protein structures. The indices are intended for stability studies, predicting Φ -values, predicting folding rate constants, protein QSAR/QSPR as well as protein alignment studies. Also, these indices could be used as scoring function in protein-protein docking or 3D protein structure prediction algorithms and any others applications which need a numerical code for proteins and/or residues from 2D or 3D format.

Quantitative structure–activity relationshipComputer sciencePhysics and Astronomy(all)Protein structure predictionMolten globuleFolding degreeFormalism (philosophy of mathematics)Protein indicesProtein structureFPIDocking (molecular)Protein stabilityPhysical chemistryBiological systemStatistical potentialMacromoleculeProtein folding descriptor
researchProduct