Search results for "formal languages"

showing 10 items of 322 documents

Counting with Probabilistic and Ultrametric Finite Automata

2014

We investigate the state complexity of probabilistic and ultrametric finite automata for the problem of counting, i.e. recognizing the one-word unary language \(C_n=\left\{ 1^n \right\} \). We also review the known results for other types of automata.

Discrete mathematicsFinite-state machineState complexityUnary languageProbabilistic logicQuantum finite automataNonlinear Sciences::Cellular Automata and Lattice GasesUltrametric spaceComputer Science::Formal Languages and Automata TheoryMathematicsAutomaton
researchProduct

Superiority Of One-Way And Realtime Quantum Machines

2012

In automata theory, quantum computation has been widely examined for finite state machines, known as quantum finite automata (QFAs), and less attention has been given to QFAs augmented with counters or stacks. In this paper, we focus on such generalizations of QFAs where the input head operates in one-way or realtime mode, and present some new results regarding their superiority over their classical counterparts. Our first result is about the nondeterministic acceptance mode: Each quantum model architecturally intermediate between realtime finite state automaton and one-way pushdown automaton (one-way finite automaton, realtime and one-way finite automata with one-counter, and realtime push…

Discrete mathematicsFinite-state machineTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESGeneral MathematicsPushdown automaton0102 computer and information sciences02 engineering and technologyω-automaton01 natural sciencesComputer Science ApplicationsNondeterministic algorithmTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineeringQuantum finite automataAutomata theory020201 artificial intelligence & image processingAlgorithmSoftwareComputer Science::Formal Languages and Automata TheoryQuantum cellular automatonMathematicsQuantum computer
researchProduct

On block pumpable languages

2016

Ehrenfeucht, Parikh and Rozenberg gave an interesting characterisation of the regular languages called the block pumping property. When requiring this property only with respect to members of the language but not with respect to nonmembers, one gets the notion of block pumpable languages. It is shown that these block pumpable are a more general concept than regular languages and that they are an interesting notion of their own: they are closed under intersection, union and homomorphism by transducers; they admit multiple pumping; they have either polynomial or exponential growth.

Discrete mathematicsGeneral Computer ScienceAbstract family of languagesComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)0102 computer and information sciences02 engineering and technology01 natural sciencesCone (formal languages)Pumping lemma for regular languagesTheoretical Computer ScienceCombinatoricsRegular languageIntersection010201 computation theory & mathematicsBlock (programming)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingHomomorphismPumping lemma for context-free languagesComputer Science::Formal Languages and Automata TheoryMathematicsTheoretical Computer Science
researchProduct

Balancing and clustering of words in the Burrows–Wheeler transform

2011

AbstractCompression algorithms based on Burrows–Wheeler transform (BWT) take advantage of the fact that the word output of BWT shows a local similarity and then turns out to be highly compressible. The aim of the present paper is to study such “clustering effect” by using notions and methods from Combinatorics on Words.The notion of balance of a word plays a central role in our investigation. Empirical observations suggest that balance is actually the combinatorial property of input word that ensure optimal BWT compression. Moreover, it is reasonable to assume that the more balanced the input word is, the more local similarity we have after BWT (and therefore the better the compression is).…

Discrete mathematicsGeneral Computer ScienceBurrows–Wheeler transformCombinatorics on wordsPalindromeComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Binary alphabetTheoretical Computer ScienceCombinatorics on wordsData compressionEntropy (information theory)Combinatorics on words; Burrows–Wheeler transform; Data compressionArithmeticCluster analysisEmpirical evidenceBurrows–Wheeler transformComputer Science::Formal Languages and Automata TheoryMathematicsData compressionComputer Science(all)
researchProduct

Varieties and Covarieties of Languages (Extended Abstract)

2013

AbstractBecause of the isomorphism (X×A)→X≅X→(A→X), the transition structure of a deterministic automaton with state set X and with inputs from an alphabet A can be viewed both as an algebra and as a coalgebra. This algebra-coalgebra duality goes back to Arbib and Manes, who formulated it as a duality between reachability and observability, and is ultimately based on Kalmanʼs duality in systems theory between controllability and observability. Recently, it was used to give a new proof of Brzozowskiʼs minimization algorithm for deterministic automata. Here we will use the algebra-coalgebra duality of automata as a common perspective for the study of both varieties and covarieties, which are …

Discrete mathematicsGeneral Computer ScienceCoalgebraData ScienceStructure (category theory)Duality (optimization)equationalgebraAutomataTheoretical Computer ScienceAlgebravarietyReachabilityDeterministic automatonComputingMethodologies_DOCUMENTANDTEXTPROCESSINGcoequationObservabilityIsomorphismcovarietyVariety (universal algebra)coalgebraComputer Science::Formal Languages and Automata TheoryComputer Science(all)MathematicsElectronic Notes in Theoretical Computer Science
researchProduct

An automata-theoretic approach to the study of the intersection of two submonoids of a free monoid

2008

We investigate the intersection of two finitely generated submonoids of the free monoid on a finite alphabet. To this purpose, we consider automata that recognize such submonoids and we study the product automata recognizing their intersection. By using automata methods we obtain a new proof of a result of Karhumaki on the cha- racterization of the intersection of two submonoids of rank two, in the case of prefix (or suffix) generators. In a more general setting, for an arbitrary number of generators, we prove that if H and K are two finitely generated submonoids generated by prefix sets such that the product automaton associated to H ∩ K has a given special property then �(H ∩ K) ≤ �(H)�(K…

Discrete mathematicsGenerator (category theory)General MathematicsCharacterization (mathematics)Computer Science ApplicationsCombinatoricsPrefixMathematics Subject ClassificationIntersectionFree monoidProduct (mathematics)Rank (graph theory)Computer Science::Formal Languages and Automata TheorySoftwareAutomata Theory Free MonoidsMathematics
researchProduct

Sobriety and spatiality in categories of lattice-valued algebras

2012

The paper provides an analogue of the famous equivalence between the categories of sober topological spaces and spatial locales for the framework of (L,M)-fuzzy topology of Kubiak and Sostak (and partly to that of Guido). To be more general, we replace locales with localic lattice-valued algebras in the sense of Di Nola and Gerla and use the respective generalized topological setting. As a result, it appears that the shift from crisp algebras to lattice-valued algebras weakens (resp. strengthens) considerably the classical (including the point-set lattice-theoretic setting of Rodabaugh) notion of sobriety (resp. spatiality).

Discrete mathematicsInterior algebraSobrietyArtificial IntelligenceLogicMathematics::General TopologyGeneral topologyTopological spaceEquivalence (formal languages)MathematicsFuzzy Sets and Systems
researchProduct

Automata and differentiable words

2011

We exhibit the construction of a deterministic automaton that, given k > 0, recognizes the (regular) language of k-differentiable words. Our approach follows a scheme of Crochemore et al. based on minimal forbidden words. We extend this construction to the case of C\infinity-words, i.e., words differentiable arbitrary many times. We thus obtain an infinite automaton for representing the set of C\infinity-words. We derive a classification of C\infinity-words induced by the structure of the automaton. Then, we introduce a new framework for dealing with \infinity-words, based on a three letter alphabet. This allows us to define a compacted version of the automaton, that we use to prove that ev…

Discrete mathematicsKolakoski wordGeneral Computer ScienceC∞-wordsPowerset constructionTimed automatonPushdown automatonBüchi automatonComputer Science - Formal Languages and Automata TheoryComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)68R15AutomataTheoretical Computer ScienceCombinatoricsForbidden wordsDeterministic automatonProbabilistic automatonTwo-way deterministic finite automatonNondeterministic finite automatonC∞ -wordForbidden wordComputer Science::Formal Languages and Automata TheoryComputer Science(all)Computer Science - Discrete MathematicsMathematicsTheoretical Computer Science
researchProduct

Quantum Finite Automata and Logics

2006

The connection between measure once quantum finite automata (MO-QFA) and logic is studied in this paper. The language class recognized by MO-QFA is compared to languages described by the first order logics and modular logics. And the equivalence between languages accepted by MO-QFA and languages described by formulas using Lindstrom quantifier is shown.

Discrete mathematicsLindström quantifierNested wordAbstract family of languagesComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Computer Science::Computational ComplexityComputer Science::Digital LibrariesAlgebraTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESMonoidal t-norm logicComputer Science::Programming LanguagesQuantum finite automataEquivalence (formal languages)T-norm fuzzy logicsComputer Science::Formal Languages and Automata TheoryAND gateMathematics
researchProduct

Logics with counting and equivalence

2014

We consider the two-variable fragment of first-order logic with counting, subject to the stipulation that a single distinguished binary predicate be interpreted as an equivalence. We show that the satisfiability and finite satisfiability problems for this logic are both NEXPTIME-complete. We further show that the corresponding problems for two-variable first-order logic with counting and two equivalences are both undecidable.

Discrete mathematicsLogical equivalenceComplexityHigher-order logicSatisfiabilityUndecidable problemStipulationCombinatoricsBinary predicateTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESEquivalence relationComputer Science::Logic in Computer ScienceEquivalence relationSatisfiabilityEquivalence (formal languages)MathematicsProceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
researchProduct