Search results for "fractals"
showing 10 items of 40 documents
Fractal analyses reveal independent complexity and predictability of gait
2017
Locomotion is a natural task that has been assessed since decades and used as a proxy to highlight impairments of various origins. Most studies adopted classical linear analyses of spatio-temporal gait parameters. Here, we use more advanced, yet not less practical, non-linear techniques to analyse gait time series of healthy subjects. We aimed at finding more sensitive indexes related to spatio-temporal gait parameters than those previously used, with the hope to better identify abnormal locomotion. We analysed large-scale stride interval time series and mean step width in 34 participants while altering walking direction (forward vs. backward walking) and with or without galvanic vestibular…
Isometric embeddings of snowflakes into finite-dimensional Banach spaces
2016
We consider a general notion of snowflake of a metric space by composing the distance by a nontrivial concave function. We prove that a snowflake of a metric space $X$ isometrically embeds into some finite-dimensional normed space if and only if $X$ is finite. In the case of power functions we give a uniform bound on the cardinality of $X$ depending only on the power exponent and the dimension of the vector space.
Devil’s vortex-lenses
2009
In this paper we present a new kind of vortex lenses in which the radial phase distribution is characterized by the "devil's staircase" function. The focusing properties of these fractal DOEs coined Devil's vortex-lenses are analytically studied and the influence of the topological charge is investigated. It is shown that under monochromatic illumination a vortex devil's lens give rise a focal volume containing a delimited chain of vortices that are axially distributed according to the self-similarity of the lens.
A virtual laboratory designed for teaching diffractive lenses
2010
[EN] We present a virtual laboratory generated in Matlab GuiQc (Graphical User Interface) for its use in Optics courses as an informatic tool for teaching the focusing properties of a diffractive lens. This Gui allows the students to learn easily and rapidly about the influence on the focal volume of the lens construction parameters. As an example in this work we analyze fractal diffractive lenses because we found that fractal geometry is a highly motivating topic for students since it is related to a wide range of scientific and technological phenomena.
Laminar flow through fractal porous materials: the fractional-order transport equation
2015
Abstract The anomalous transport of a viscous fluid across a porous media with power-law scaling of the geometrical features of the pores is dealt with in the paper. It has been shown that, assuming a linear force–flux relation for the motion in a porous solid, then a generalized version of the Hagen–Poiseuille equation has been obtained with the aid of Riemann–Liouville fractional derivative. The order of the derivative is related to the scaling property of the considered media yielding an appropriate mechanical picture for the use of generalized fractional-order relations, as recently used in scientific literature.
The fractal model of non-local elasticity with long-range interactions
2010
The mechanically-based model of non-local elasticity with long-range interactions is framed, in this study, in a fractal mechanics context. Non-local interactions are modelled introducing long-range central body forces between non-adjacent volume elements of the elastic continuum. Such long-range interactions are modelled as proportional to the product of interacting volumes, to the relative displacements of the centroids and to a distance-decaying function that is monotonically-decreasing with the distance. The choice of the decaying function is a key aspect of the model and it has been proved that any continuous function, strictly positive, is thermodynamically consistent and it leads to …
Undergraduate experiment with fractal diffraction gratings
2011
We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics laboratories and compared with those obtained with conventional periodic gratings. It is shown that fractal gratings produce self-similar diffraction patterns which can be evaluated analytically. Good agreement is obtained between experimental and numerical results. © 2011 IOP Publishing Ltd.
Dimensions of random affine code tree fractals
2014
We calculate the almost sure Hausdorff dimension for a general class of random affine planar code tree fractals. The set of probability measures describing the randomness includes natural measures in random $V$-variable and homogeneous Markov constructions.
Aspects fractals de la morphologie urbaine
1994
National audience
Mathematical and Coding Lessons Based on Creative Origami Activities
2019
AbstractThis paper considers how creativity and creative activities can be encouraged in regular mathematical classes by combining different teaching approaches and academic disciplines. We combined origami and paper folding with fractals and their mathematical properties as well as with coding in Scratch in order to facilitate learning mathematics and computer science. We conducted a case study experiment in a Serbian school with 15 high school students and applied different strategies for learning profound mathematical and coding concepts such as fractals dimension and recursion. The goal of the study was to employ creative activities and examine students’ activities during this process i…