Search results for "front-end electronic"
showing 6 items of 16 documents
A laser-based system for a fast and accurate measurement of gain and linearity of photomultipliers
2018
This paper describes a method for the measurement of gain and linearity of photomultipliers (PMTs). Gain and linearity are two fundamental parameters to use properly a PMT in several physics experiments. In the developed system light is laser generated and adressed to the PMT through a set of optical fibers. The data acquisition system consists in a commercial 16 channel digitizer coupled to a custom front-end board. With the chosen digitizer the system is scalable to test up to 16 PMTs, with the aid of a light distribution system and a multi-channel version of the front-end board. Data analysis is performed by a custom acquisition software. A 1.5» Hamamatsu PMT is used to validate the syst…
Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory
2021
The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Argentina -Comision Nacional de Energia Atomica; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings and Valle Las Lenas; in gratitude for their continuing cooperation over land access; Australia -the Australian Research Council; Braz…
Mini-MALTA: Radiation hard pixel designs for small-electrode monolithic CMOS sensors for the High Luminosity LHC
2020
Journal of Instrumentation 15(02), P02005 (2020). doi:10.1088/1748-0221/15/02/P02005
MALTA: an asynchronous readout CMOS monolithic pixel detector for the ATLAS High-Luminosity upgrade
2019
The ATLAS collaboration is currently investigating CMOS monolithic pixel sensors for the outermost layer of the upgrade of its Inner Tracker (ITk). For this application, two large scale prototypes featuring small collection electrode have been produced in a radiation-hard process modification of a standard 0.18 μm CMOS imaging technology: the MALTA, with a novel asynchronous readout, and the TJ MONOPIX, based on the well established "column-drain" architecture. The MALTA chip is the first full-scale prototype suitable for the development of a monolithic module for the ITk. It features a fast and low-power front-end, an architecture designed to cope with an hit-rate up to 2 MHz/mm2 without c…
Front-End Electronics for the KAOS Spectrometer at MAMI
2009
A new front-end electronics system has been developed for the electron arm tracking detectors in the Kaos spectrometer at the Mainz microtron MAMI. The signals of multi-anode photomultipliers are collected by 96-channel front-end boards, digitized by double-threshold discriminators and the signal time is picked up by F1 TDC chips. The system was designed to process more than 4,000 channels and to cope with the high electron flux in the spectrometer and the high count rate requirement of the detectors. A subset of 288 channels was installed and successfully used in the 2008 data taking period of the Kaos spectrometer.
A facility to validate photomultipliers for the upgrade of the Pierre Auger Observatory.
2020
The Pierre Auger Observatory is undergoing a major upgrade named AugerPrime with the primary aim to add sensitivity to the mass-composition discrimination of ultrahigh-energy cosmic rays. Two different photomultipliers will be added to each water-Cherenkov station of the surface detector of Observatory. To achieve the scientific goals of AugerPrime these photomultipliers have to ensure a linear response to input-light in a wide range. This paper describes a system developed for the validation of AugerPrime-photomultipliers.