Search results for "functional data"
showing 6 items of 46 documents
Functional Principal Components Analysis with Survey Data
2008
This work aims at performing Functional Principal Components Analysis (FPCA) with Horvitz-Thompson estimators when the observations are curves collected with survey sampling techniques. FPCA relies on estimations of the eigenelements of the covariance operator which can be seen as nonlinear functionals. Adapting to our functional context the linearization technique based on the influence function developed by Deville (1999), we prove that these estimators are asymptotically design unbiased and convergent. Under mild assumptions, asymptotic variances are derived for the FPCA’ estimators and convergent estimators of them are proposed. Our approach is illustrated with a simulation study and we…
Comparing FPCA Based on Conditional Quantile Functions and FPCA Based on Conditional Mean Function
2019
In this work functional principal component analysis (FPCA) based on quantile functions is proposed as an alternative to the classical approach, based on the functional mean. Quantile regression characterizes the conditional distribution of a response variable and, in particular, some features like the tails behavior; smoothing splines have also been usefully applied to quantile regression to allow for a more flexible modelling. This framework finds application in contexts involving multiple high frequency time series, for which the functional data analysis (FDA) approach is a natural choice. Quantile regression is then extended to the estimation of functional quantiles and our proposal exp…
An Examination of Tourist Arrivals Dynamics Using Short-Term Time Series Data: A Space—Time Cluster Approach
2013
The purpose of this study is to examine the development of Italian tourist areas ( circoscrizioni turistiche) through a cluster analysis of short time series. The technique is an adaptation of the functional data analysis approach developed by Abraham et al (2003), which combines spline interpolation with k-means clustering. The findings indicate the presence of two patterns (increasing and stable) averagely characterizing groups of territories. Moreover, tests of spatial contiguity suggest the presence of ‘space–time clusters’; that is, areas in the same ‘time cluster’ are also spatially contiguous. These findings appear to be more robust in particular for those series characterized by an…
Robust estimation of mean electricity consumption curves by sampling for small areas in presence of missing values
2017
In this thesis, we address the problem of robust estimation of mean or total electricity consumption curves by sampling in a finite population for the entire population and for small areas. We are also interested in estimating mean curves by sampling in presence of partially missing trajectories.Indeed, many studies carried out in the French electricity company EDF, for marketing or power grid management purposes, are based on the analysis of mean or total electricity consumption curves at a fine time scale, for different groups of clients sharing some common characteristics.Because of privacy issues and financial costs, it is not possible to measure the electricity consumption curve of eac…
Estimate the mean electricity consumption curve by survey and take auxiliary information into account
2012
In this thesis, we are interested in estimating the mean electricity consumption curve. Since the study variable is functional and storage capacities are limited or transmission cost are high survey sampling techniques are interesting alternatives to signal compression techniques. We extend, in this functional framework, estimation methods that take into account available auxiliary information and that can improve the accuracy of the Horvitz-Thompson estimator of the mean trajectory. The first approach uses the auxiliary information at the estimation stage, the mean curve is estimated using model-assisted estimators with functional linear regression models. The second method involves the au…
Measuring Dissimilarity Between Curves by Means of Their Granulometric Size Distributions
2008
The choice of a dissimilarity measure between curves is a key point for clustering functional data. Functions are usually pointwise compared and, in many situations, this approach is not appropriate. Mathematical Morphology provides us with a toolbox to overcome this problem. We propose some dissimilarity measures based on morphological granulometries and their performance is evaluated on some functional datasets.