Search results for "functional data"

showing 6 items of 46 documents

Functional Principal Components Analysis with Survey Data

2008

This work aims at performing Functional Principal Components Analysis (FPCA) with Horvitz-Thompson estimators when the observations are curves collected with survey sampling techniques. FPCA relies on estimations of the eigenelements of the covariance operator which can be seen as nonlinear functionals. Adapting to our functional context the linearization technique based on the influence function developed by Deville (1999), we prove that these estimators are asymptotically design unbiased and convergent. Under mild assumptions, asymptotic variances are derived for the FPCA’ estimators and convergent estimators of them are proposed. Our approach is illustrated with a simulation study and we…

Functional principal component analysisDelta methodCovariance operatorLinearizationPrincipal component analysisFunctional data analysisEstimatorApplied mathematicsContext (language use)Mathematics
researchProduct

Comparing FPCA Based on Conditional Quantile Functions and FPCA Based on Conditional Mean Function

2019

In this work functional principal component analysis (FPCA) based on quantile functions is proposed as an alternative to the classical approach, based on the functional mean. Quantile regression characterizes the conditional distribution of a response variable and, in particular, some features like the tails behavior; smoothing splines have also been usefully applied to quantile regression to allow for a more flexible modelling. This framework finds application in contexts involving multiple high frequency time series, for which the functional data analysis (FDA) approach is a natural choice. Quantile regression is then extended to the estimation of functional quantiles and our proposal exp…

Functional principal component analysisSmoothing splineComputer scienceEconometricsFunctional data analysisFunction (mathematics)Conditional probability distributionSettore SECS-S/01 - StatisticaConditional expectationFPCA conditional quantile functions conditional mean functionQuantile regressionQuantile
researchProduct

An Examination of Tourist Arrivals Dynamics Using Short-Term Time Series Data: A Space—Time Cluster Approach

2013

The purpose of this study is to examine the development of Italian tourist areas ( circoscrizioni turistiche) through a cluster analysis of short time series. The technique is an adaptation of the functional data analysis approach developed by Abraham et al (2003), which combines spline interpolation with k-means clustering. The findings indicate the presence of two patterns (increasing and stable) averagely characterizing groups of territories. Moreover, tests of spatial contiguity suggest the presence of ‘space–time clusters’; that is, areas in the same ‘time cluster’ are also spatially contiguous. These findings appear to be more robust in particular for those series characterized by an…

spline interpolationjoin count testSeries (mathematics)Computer scienceSpace timeGeography Planning and Developmentk-means clusteringcluster analysis; short time series; spline interpolation; K-means; join count test; Italian tourist areasFunctional data analysisjel:C21jel:C22jel:C38jel:C14jel:L83K-meanshort time serieContiguity (probability theory)Tourism Leisure and Hospitality Managementcluster analysiItalian tourist areasEconometricsCluster (physics)Settore SECS-S/05 - Statistica SocialeSpline interpolationCluster analysisTourism Economics
researchProduct

Robust estimation of mean electricity consumption curves by sampling for small areas in presence of missing values

2017

In this thesis, we address the problem of robust estimation of mean or total electricity consumption curves by sampling in a finite population for the entire population and for small areas. We are also interested in estimating mean curves by sampling in presence of partially missing trajectories.Indeed, many studies carried out in the French electricity company EDF, for marketing or power grid management purposes, are based on the analysis of mean or total electricity consumption curves at a fine time scale, for different groups of clients sharing some common characteristics.Because of privacy issues and financial costs, it is not possible to measure the electricity consumption curve of eac…

Linear mixed modelsSmall area estimationMissing dataRegression treesEstimation sur petits domaines[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]Estimateurs à noyauModèles linéaires mixtesRandom forestsBiais conditionnelsFunctional dataSurvey sampling[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]RobustesseDonnées fonctionnellesPlus proches voisinsForêts aléatoiresConditional biasKernel estimatorsNearest neighboursSondageDonnées manquantesRobustnessArbres de régression
researchProduct

Estimate the mean electricity consumption curve by survey and take auxiliary information into account

2012

In this thesis, we are interested in estimating the mean electricity consumption curve. Since the study variable is functional and storage capacities are limited or transmission cost are high survey sampling techniques are interesting alternatives to signal compression techniques. We extend, in this functional framework, estimation methods that take into account available auxiliary information and that can improve the accuracy of the Horvitz-Thompson estimator of the mean trajectory. The first approach uses the auxiliary information at the estimation stage, the mean curve is estimated using model-assisted estimators with functional linear regression models. The second method involves the au…

Model-assisted estimator[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM]Unequal probability sampling without replacement[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]Functional linear modelCovariance functionFunctional central limit theoremConfidence bandFunctional dataBootstrapSurvey sampling[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]Théorème central limite fonctionnelDonnées fonctionnellesHajek variance approximationFonction de covariancePlan à probabilités inégales sans remiseEstimateur de Horvitz-ThompsonModèle linéaire fonctionnelApproximation de HájekHorvitz-Thompson estimatorSondageBande de confianceEstimateur model-assisted
researchProduct

Measuring Dissimilarity Between Curves by Means of Their Granulometric Size Distributions

2008

The choice of a dissimilarity measure between curves is a key point for clustering functional data. Functions are usually pointwise compared and, in many situations, this approach is not appropriate. Mathematical Morphology provides us with a toolbox to overcome this problem. We propose some dissimilarity measures based on morphological granulometries and their performance is evaluated on some functional datasets.

Functional principal component analysisPointwiseDynamic time warpingComputer sciencebusiness.industryFunctional data analysisPattern recognitionMathematical morphologyMeasure (mathematics)ToolboxComputingMethodologies_PATTERNRECOGNITIONArtificial intelligenceCluster analysisbusiness
researchProduct