Search results for "fysik"

showing 10 items of 292 documents

Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC

2011

Hitherto unobserved long-lived massive particles with electric and/or colour charge are predicted by a range of theories which extend the Standard Model. In this Letter a search is performed at the ATLAS experiment for slow-moving charged particles produced in proton–proton collisions at 7 TeV centre-of-mass energy at the LHC, using a data-set corresponding to an integrated luminosity of 34 pb[superscript −1]. No deviations from Standard Model expectations are found. This result is interpreted in a framework of supersymmetry models in which coloured sparticles can hadronise into long-lived bound hadronic states, termed R-hadrons, and 95% CL limits are set on the production cross-sections of…

Nuclear and High Energy PhysicsParticle physicsR-hadronCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]HadronATLAS experimentFOS: Physical sciencesddc:500.253001 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Supersymmetry; Long-lived particle; R-hadron; LimitMASSIVE CHARGED PARTICLES0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fysikddc:530High Energy Physics010306 general physicsPhysicsGluinoLarge Hadron ColliderScience & Technology010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleATLAS experimentHigh Energy Physics::PhenomenologyFísicaSuperpartnerSupersymmetryATLASLong-lived particleCharged particleR-hadronPhysical SciencesExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearHigh Energy Physics::ExperimentLHCSupersymmetryLimitlimit; supersymmetry; long-lived particle; r-hadronParticle Physics - Experiment
researchProduct

Future Physics Programme of BESIII

2020

There has recently been a dramatic renewal of interest in the subjects of hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like $XYZ$ states at BESIII and $B$ factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related $X(1835)$ meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII over the remaining lifetime of BEPCII operation. This survey will help in the optimization of the data-taking pla…

Nuclear and High Energy PhysicsParticle physicsX(1835)charmed mesonMesoncharmoniumNuclear TheoryFOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNOSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Hadron physicsHadron spectroscopySubatomic Physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Charm (quantum number)charmed baryontau010306 general physicsNuclear ExperimentInstrumentationanti-p pactivity reportPhysicsthreshold: enhancementLuminosity (scattering theory)BES010308 nuclear & particles physicshadron spectroscopyHigh Energy Physics::PhenomenologyThe RenaissanceAstronomy and AstrophysicsBeijing Stor: upgradeBaryonHigh Energy Physics - PhenomenologyUpgradeexperimental equipment[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentluminosity: high
researchProduct

High intensity neutrino oscillation facilities in Europe

2013

The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neu…

Nuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectors[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]7. Clean energy01 natural sciencesNuclear physicsneutrino0103 physical sciencesEmmaFysiklcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530010306 general physicsNeutrino oscillationQCAstroparticle physicsPhysicsLarge Hadron ColliderBeta-Beam010308 nuclear & particles physicsFísicaSurfaces and InterfacesAccelerators and Storage RingsNeutrino detectorPhysical Scienceslcsh:QC770-798Physics::Accelerator PhysicsNeutrino FactoryHigh Energy Physics::ExperimentNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Storage ringLepton
researchProduct

Conceptual design of the AGATA 1$\pi$ array at GANIL

2017

The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on sim…

Nuclear and High Energy PhysicsPlunger devicePhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCyclotronScintillator[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Accelerator Physics and InstrumentationTracking (particle physics)01 natural sciences7. Clean energylaw.inventionNuclear physicsConceptual designlaw0103 physical sciencesPARIS LaBr3 detectorNeutron detectionPulse shape analysisAGATA spectrometer010306 general physicsNuclear ExperimentInstrumentationPhysicsSpectrometerVAMOS plus plus spectrometer010308 nuclear & particles physicsDetectorFATIMA LaBr3 detectorAcceleratorfysik och instrumenteringDIAMANT detectorNEDA detectorAuthor Keywords:AGATA spectrometerPhysics::Accelerator PhysicsAGATAgamma-ray trackingGANIL facility
researchProduct

Structure, tritium depth profile and desorption from 'plasma-facing' beryllium materials of ITER-Like-Wall at JET

2017

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053 . The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Nuclear and High Energy PhysicsThermal desorption spectroscopyMaterials Science (miscellaneous)Nuclear engineeringJoint European TorusAnalytical chemistryThermal desorptionchemistry.chemical_elementFuel accumulationTritiumThermal desorption7. Clean energy01 natural sciences010305 fluids & plasmasFusion plasma och rymdfysikDesorption0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]010306 general physicsJet (fluid)ChemistryITER-like wallPlasmaITER-Like-Walllcsh:TK9001-9401Fusion Plasma and Space Physicsrespiratory tract diseasesNuclear Energy and Engineeringcardiovascular systemlcsh:Nuclear engineering. Atomic powerTritiumBerylliumDepth profileBeryllium
researchProduct

Measurements of Sigma(+) and Sigma(-) time-like electromagnetic form factors for center-of-mass energies from 2.3864 to 3.0200 GeV

2021

Physics letters / B 814, 136110 (2021). doi:10.1016/j.physletb.2021.136110

Nuclear and High Energy Physicselectric [form factor]Electron–positron annihilationFOS: Physical sciencesSigma hyperonannihilation [electron positron]BESIII; Cross section; Electromagnetic form factor; Σ hyperonhyperon53001 natural sciencesHigh Energy Physics - ExperimentNOSubatomär fysikHigh Energy Physics - Experiment (hep-ex)Angular distributionAstronomi astrofysik och kosmologi0103 physical sciencesSubatomic PhysicsAstronomy Astrophysics and Cosmologyddc:530angular distributionstructure010306 general physicsElectromagnetic form factorPhysics2.3864-3.0200 GeV-cmsBESelectron positron --> Sigma+ Sigma-Cross section010308 nuclear & particles physicsHyperonBESIIIBeijing Storlcsh:QC1-999Sigma HyperonBaryonΣ hyperonmagnetic [form factor]ratio [form factor]valence [quark]colliding beams [electron positron]High Energy Physics::Experimentpair production [Sigma+]Atomic physicsform factor [Sigma-]electromagnetic [form factor]lcsh:Physicsform factor [Sigma+]experimental results
researchProduct

Study of BESIII trigger efficiencies with the 2018 J/psi data

2021

Using a dedicated data sample taken in 2018 on the $J/\psi$ peak, we perform a detailed study of the trigger efficiencies of the BESIII detector. The efficiencies are determined from three representative physics processes, namely Bhabha-scattering, dimuon production and generic hadronic events with charged particles. The combined efficiency of all active triggers approaches $100\%$ in most cases with uncertainties small enough as not to affect most physics analyses.

Nuclear and High Energy Physicshadronic eventsHadron01 natural sciencesNOHigh Energy Physics - ExperimentNuclear physicsSubatomär fysikBESIII; trigger efficiency; Bhabha; dimuon; hadronic events0103 physical sciencesSubatomic PhysicsBhabhaddc:530trigger efficiency010306 general physicsInstrumentationBhabha scatteringPhysicsdimuon010308 nuclear & particles physicsDetectorBESIIIAstronomy and AstrophysicsCharged particleHigh Energy Physics::ExperimentBESIII trigger efficiency Bhabha dimuon hadronic events
researchProduct

Benchmark of a multi-physics Monte Carlo simulation of an ionguide for neutron-induced fission products

2022

AbstractTo enhance the production of medium-heavy, neutron-rich nuclei, and to facilitate measurements of independent yields of neutron-induced fission, a proton-to-neutron converter and a dedicated ion guide for neutron-induced fission have been developed for the IGISOL facility at the University of Jyväskylä. The ion guide holds the fissionable targets, and the fission products emerging from the targets are collected in helium gas and transported to the downstream experimental stations. A computer model, based on a combination of MCNPX for modeling the neutron production, the fission code GEF, and GEANT4 for the transport of the fission products, was developed. The model will be used to i…

Nuclear and High Energy PhysicstutkimuslaitteetNuclear Theorygamma-spectroscopyFission productsComputer Science::Digital LibrariesSubatomär fysikfissioMonte Carlo -menetelmätSubatomic PhysicsPhysics::Atomic and Molecular ClusterssimulointiGEFydinfysiikkaNuclear ExperimentMCNPXGEANT4
researchProduct

Simulations of the stopping efficiencies of fission ion guides

2017

With the Ion Guide Isotope Separator On-Line (IGISOL) facility, located at the University of Jyväskylä, products of nuclear reactions are separated by mass. The high resolving power of the JYFLTRAP Penning trap, with full separation of individual nuclides, capacitates the study of nuclides far from the line of stability. For the production of neutron-rich medium-heavy nuclides, fissioning of actinides is a feasible reaction. This can be achieved with protons from an in-house accelerator or, alternatively, with neutrons through the addition of a newly developed Be(p,xn)-converter. The hereby-obtained fission products are used in nuclear data measurements, for example fission yields, nuclear …

Nuclear reactionCold fissionFissionQC1-999Nuclear TheoryFission product yield01 natural sciencesmethodsSubatomär fysikNuclear physicsmenetelmätSubatomic Physics0103 physical sciencesNeutronNuclideNuclear Experiment010306 general physicsFission productsexperimental facilitiesta114010308 nuclear & particles physicsChemistryPhysicsRadiochemistryvarusteettekniikattechniquesLong-lived fission productequipmentEPJ Web of Conferences
researchProduct

Fission yield measurements at IGISOL

2016

The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure rela…

Nuclear reactionNuclear fission productFission productsIsotopeta114010308 nuclear & particles physicsChemistryFissionPhysicsQC1-999Nuclear TheoryFission product yieldPenning trap01 natural sciencesNuclear physicsSubatomär fysik0103 physical sciencesSubatomic PhysicsPhysics::Atomic and Molecular ClustersNeutronfission product yieldIGISOL010306 general physicsNuclear Experiment
researchProduct