Search results for "galaxies"

showing 10 items of 341 documents

The VISTA Carina Nebula Survey II. Spatial distribution of the infrared-excess-selected young stellar population

2015

We performed a deep wide-field (6.76 deg^2) near-infrared survey with the VISTA telescope that covers the entire extent of the Carina nebula complex (CNC). The point-source catalog created from these data contains around four million individual objects down to masses of 0.1 M_sun. We present a statistical study of the large-scale spatial distribution and an investigation of the clustering properties of infrared-excesses objects, which are used to trace disk-bearing young stellar objects (YSOs). We find that a (J - H) versus (Ks - [4.5]) color-color diagram is well suited to tracing the population of YSO-candidates (cYSOs) by their infrared excess. We identify 8781 sources with strong infrar…

PhysicsInfrared excesseducation.field_of_studyNebula010504 meteorology & atmospheric sciencesStellar populationYoung stellar objectPopulationFOS: Physical sciencesAstronomy and AstrophysicsColor–color diagramAstrophysicsGalactic plane01 natural sciencesAstrophysics - Astrophysics of GalaxiesPhotometry (optics)Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)0103 physical scienceseducation010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciences
researchProduct

The ALHAMBRA survey: 2D analysis of the stellar populations in massive early-type galaxies atz< 0.3

2017

Reproduced with permission from Astronomy & Astrophysics

Stellar populationMetallicityAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicselliptical and lenticular cD [Galaxies]01 natural sciencescDPhotometry (optics)0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicsgalaxies: formationgalaxies: elliptical and lenticularSpectroscopy010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics[PHYS]Physics [physics]Physics010308 nuclear & particles physicsphotometry [Galaxies]FísicaAstronomy and Astrophysicsevolution [Galaxies]Astrophysics - Astrophysics of Galaxiesformation [Galaxies]Galaxy2d analysisEarly typeGalaxies: elliptical and lenticular cDgalaxies: photometrySpace and Planetary ScienceSpectral energy distributionAstrophysics::Earth and Planetary Astrophysicsgalaxies: evolution[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct

A parametric description of the 3D structure of the Galactic bar/bulge using the VVV survey

2017

We study the structure of the inner Milky Way using the latest data release of the Vista Variables in Via Lactea (VVV) survey. The VVV is a deep near-infrared, multi-colour photometric survey with a coverage of 300 square degrees towards the Bulge/Bar. We use Red Clump (RC) stars to produce a high-resolution dust map of the VVV's field of view. From de-reddened colour-magnitude diagrams we select Red Giant Branch stars to investigate their 3D density distribution within the central 4 kpc. We demonstrate that our best-fit parametric model of the Bulge density provides a good description of the VVV data, with a median percentage residual of 5$\%$ over the fitted region. The strongest of the o…

Absolute magnitudeInitial mass functionastro-ph.GAMilky WayFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGalaxy: bulgeBulge0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsRed clumpGalaxy: structureAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSLuminosity function (astronomy)Physics010308 nuclear & particles physicsGalactic CenterAstronomyAstronomy and AstrophysicsGalaxy: fundamental parametersAstrophysics - Astrophysics of GalaxiesGalaxy: centregalaxies: individual: Milky WayRed-giant branchSpace and Planetary ScienceGalaxy: formationAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

A study of the B and Be star population in the field of the LMC open cluster NGC 2004 with VLT-FLAMES

2005

Observations of hot stars belonging to the young cluster LMC-NGC2004 and its surrounding region have been obtained with the VLT-GIRAFFE facilities in MEDUSA mode. 25 Be stars were discovered; the proportion of Be stars compared to B-type stars is found to be of the same order in the LMC and in the Galaxy fields. 23 hot stars were discovered as spectroscopic binaries (SB1 and SB2), 5 of these are found to be eclipsing systems from the MACHO database, with periods of a few days. About 75% of the spectra in our sample are polluted by hydrogen (Halpha and Hgamma), [SII] and [NII] nebular lines. These lines are typical of HII regions. They could be associated with patchy nebulosities with a bi-m…

Be starPopulationFOS: Physical sciencesAstrophysicsAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA01 natural sciencesbinaries: eclipsing [Stars]Spectral lineStars: early-type[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]ISM: nebular lines and bandsMagellanic Clouds [Galaxies]early-type [Stars]Stars: binaries: spectroscopic0103 physical sciencesCluster (physics)education010303 astronomy & astrophysicsStars: binaries: eclipsingPhysicseducation.field_of_study[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsStars: emission-lineAstrophysics (astro-ph)Stars: early-type ; Stars: emission-line Be ; Galaxies: Magellanic Clouds ; Stars: binaries: spectroscopic ; Stars: binaries: eclipsing ; ISM: lines and bandsAstronomy and AstrophysicsBeGalaxies: Magellanic CloudsGalaxyRadial velocityStarsbinaries: spectroscopic [Stars]Space and Planetary Scienceemission-line Be [Stars][SDU]Sciences of the Universe [physics]lines and bands [ISM]:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]Open cluster
researchProduct

Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing

2017

The idea that dark matter can be made of intermediate-mass primordial black holes in the $10M_\odot \lesssim M \lesssim 200M_\odot$ range has recently been reconsidered, particularly in the light of the detection of gravitational waves by the LIGO experiment. The existence of even a small fraction of dark matter in black holes should nevertheless result in noticeable quasar gravitational microlensing. Quasar microlensing is sensitive to any type of compact objects in the lens galaxy, to their abundance, and to their mass. We have analyzed optical and X-ray microlensing data from 24 gravitationally lensed quasars to estimate the abundance of compact objects in a very wide range of masses. We…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaDark matterPopulationFOS: Physical sciencesPrimordial black holeAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensing01 natural sciencesGeneral Relativity and Quantum Cosmology0103 physical scienceseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicseducation.field_of_study010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsQuasarAstrophysics - Astrophysics of GalaxiesGalaxyLIGOSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

High redshift galaxies in the ALHAMBRA survey. II. Strengthening the evidence of bright-end excess in UV luminosity functions at 2.5 <= z<= 4.5 by PD…

2018

Context. Knowing the exact shape of the ultraviolet (UV) luminosity function (LF) of high-redshift galaxies is important to understand the star formation history of the early Universe. However, the uncertainties, especially at the faint and bright ends of the LFs, remain significant. Aims. In this paper, we study the UV LF of redshift z = 2:5 4.5 galaxies in 2.38 deg of ALHAMBRA data with I ≤ 24. Thanks to the large area covered by ALHAMBRA, we particularly constrain the bright end of the LF. We also calculate the cosmic variance and the corresponding bias values for our sample and derive their host dark matter halo masses. Methods.We have used a novel methodology based on redshift and magn…

Astrophysics::High Energy Astrophysical PhenomenaContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityhigh-redshift [Galaxies]galaxies: high-redshift0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLuminosity function (astronomy)Physics[PHYS]Physics [physics]010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsCosmic varianceevolution [Galaxies]Astrophysics - Astrophysics of Galaxiesluminosity function [Galaxies]RedshiftGalaxyDark matter halogalaxies: luminosity functionSpace and Planetary Sciencemass functionMass functiongalaxies: evolution[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The ALHAMBRA survey: B -band luminosity function of quiescent and star-forming galaxies at 0.2 ≤  z  < 1 by PDF analysis

2016

[Aims]: Our goal is to study the evolution of the B-band luminosity function (LF) since z ∼ 1 using ALHAMBRA data. [Methods]: We used the photometric redshift and the I-band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with I ≤ 24 mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift - magnitude - galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also…

luminosity function mass function [Galaxies]Galaxies: statisticsAstrophysics::High Energy Astrophysical PhenomenaPopulationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesLuminositystatistics [Galaxies]0103 physical scienceseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhotometric redshiftLuminosity function (astronomy)Physicseducation.field_of_study010308 nuclear & particles physicsGalaxies: luminosity function mass functionGalaxies: evolutionAstronomy and AstrophysicsCosmic varianceB bandevolution [Galaxies]Astrophysics - Astrophysics of GalaxiesRedshiftGalaxy[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Space and Planetary ScienceHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct

First M87 Event Horizon Telescope Results. VII. Polarization of the Ring

2021

Full list of authors: Akiyama, Kazunori; Algaba, Juan Carlos; Alberdi, Antxon; Alef, Walter; Anantua, Richard; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Ball, David; Baloković, Mislav; Barrett, John; Benson, Bradford A.; Bintley, Dan; Blackburn, Lindy; Blundell, Raymond; Boland, Wilfred; Bouman, Katherine L.; Bower, Geoffrey C.; Boyce, Hope Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke; Broderick, Avery E.; Broguiere, Dominique; Bronzwaer, Thomas; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chan, Chi-kwan; Chatterjee, Shami; Chatterjee, Koushik; Chen, Ming-Tang; Chen, Yongjun; Chesler, Paul M.; Cho, Ilje; Christian, Pierre; Conway, John E.…

1663010504 meteorology & atmospheric sciences1346KinoAstrophysics - astrophysics of galaxiesAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGalaxy accretion disks01 natural sciencesAstrophysics - high energy astrophysical phenomena2033Galaxies: individual: M87 1278 1346 1769 1663 16 2033 1859 5620103 physical sciencesPolarimetrySupermassive black holes1769010303 astronomy & astrophysicsAstronomy data modeling0105 earth and related environmental sciencesVery long baseline interferometryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Active galactic nucleiGalaxies: individual: M871278F510ChatterjeeAstronomy and AstrophysicsCreative commons16562Low-luminosity active galactic nuclei13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Fish <Actinopterygii>Radio interferometryHumanities1859
researchProduct

On the carrier of inertia

2018

A change in momentum will inevitably perturb the all-embracing vacuum, whose reaction we understand as inertia. Since the vacuum's physical properties relate to light, we propose that the vacuum embodies photons, but in pairs without net electromagnetic fields. In this physical form the free space houses energy in balance with the energy of matter in the whole Universe. Likewise, we reason that a local gravitational potential is the vacuum in a local balance with energy that is bound to a body. Since a body couples to the same vacuum universally and locally, we understand that inertial and gravitational masses are identical. By the same token, we infer that gravity and electromagnetism shar…

ANOMALIESPhotonmedia_common.quotation_subjectvacuumUNIVERSEGeneral Physics and AstronomyCosmological constantPHOTONSInertia01 natural sciencesGravitationMomentumGeneral Relativity and Quantum CosmologyGravitational potentialElectromagnetism0103 physical sciences010306 general physics010303 astronomy & astrophysicsCOSMOLOGICAL CONSTANTmedia_commonPhysicsfotonitta114LEAST-ACTIONgravitaatioinertialiike115 Astronomy Space sciencelcsh:QC1-999UniverseTIMEmotion (physical phenomena)GALAXIESClassical mechanicsgravitationWAVEPRINCIPLECLUSTERSlcsh:PhysicsAIP Advances
researchProduct

Gaia DR2 reveals a star formation burst in the disc 2-3 Gyr ago

2019

We use Gaia DR2 magnitudes, colours and parallaxes for stars with G&lt;12 to explore a 15-dimensional space that includes simultaneously the initial mass function (IMF) and a non-parametric star formation history (SFH) for the Galactic disc. This inference is performed by combining the Besancon Galaxy Model fast approximate simulations (BGM FASt) and an approximate Bayesian computation algorithm. We find in Gaia DR2 data an imprint of a star formation burst 2-3 Gyr ago, in the Galactic thin disc domain, and a present star formation rate (SFR) of about 1 Msun. Our results show a decreasing trend of the SFR from 9-10 Gyr to 6-7 Gyr ago. This is consistent with the cosmological star formation …

Stellar massFOS: Physical sciencesPerturbation (astronomy)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsmass function -galaxiesstar formation rate01 natural sciencesdisk -Galaxy0103 physical sciencesGalaxy formation and evolutionAstrophysics::Solar and Stellar Astrophysicsluminosity functionDisc010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhysicsstellar content -Hertzsprung-Russell and C-M diagramsstars010308 nuclear & particles physicsStar formationDiscos (Astrofísica)Astronomy and Astrophysicsstellar initial mass functioninteractionsGalaxiesAstrophysics - Astrophysics of GalaxiesStarsGalaxyRedshiftevolution -Galaxystar formation historyGalàxiesEstelsStarsGalaxyGalaxies evolutionDisks (Astrophysics)[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Space and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)galaxy mergeEvolució de les galàxiesAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct