Search results for "galaxy formation"

showing 5 items of 25 documents

Radio mode feedback: Does relativity matter?

2017

Radio mode feedback, associated with the propagation of powerful outflows in active galaxies, is a crucial ingredient in galaxy evolution. Extragalactic jets are well collimated and relativistic, both in terms of thermodynamics and kinematics. They generate strong shocks in the ambient medium, associated with observed hotspots, and carve cavities that are filled with the shocked jet flow. In this Letter, we compare the pressure evolution in the hotspot and the cavity generated by relativistic and classical jets. Our results show that the classical approach underestimates the cavity pressure by a factor larger or equal to 2 for a given shocked volume during the whole active phase. The tensio…

Shock wavePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Active galactic nucleusCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsStar formationAstrophysics::High Energy Astrophysical PhenomenaTime evolutionFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesGalaxyTheory of relativitySpace and Planetary Science0103 physical sciencesHotspot (geology)Galaxy formation and evolutionAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Gaia DR2 reveals a star formation burst in the disc 2-3 Gyr ago

2019

We use Gaia DR2 magnitudes, colours and parallaxes for stars with G<12 to explore a 15-dimensional space that includes simultaneously the initial mass function (IMF) and a non-parametric star formation history (SFH) for the Galactic disc. This inference is performed by combining the Besancon Galaxy Model fast approximate simulations (BGM FASt) and an approximate Bayesian computation algorithm. We find in Gaia DR2 data an imprint of a star formation burst 2-3 Gyr ago, in the Galactic thin disc domain, and a present star formation rate (SFR) of about 1 Msun. Our results show a decreasing trend of the SFR from 9-10 Gyr to 6-7 Gyr ago. This is consistent with the cosmological star formation …

Stellar massFOS: Physical sciencesPerturbation (astronomy)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsmass function -galaxiesstar formation rate01 natural sciencesdisk -Galaxy0103 physical sciencesGalaxy formation and evolutionAstrophysics::Solar and Stellar Astrophysicsluminosity functionDisc010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhysicsstellar content -Hertzsprung-Russell and C-M diagramsstars010308 nuclear & particles physicsStar formationDiscos (Astrofísica)Astronomy and Astrophysicsstellar initial mass functioninteractionsGalaxiesAstrophysics - Astrophysics of GalaxiesStarsGalaxyRedshiftevolution -Galaxystar formation historyGalàxiesEstelsStarsGalaxyGalaxies evolutionDisks (Astrophysics)[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Space and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)galaxy mergeEvolució de les galàxiesAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Structure finding in cosmological simulations: the state of affairs

2013

The ever increasing size and complexity of data coming from simulations of cosmic structure formation demands equally sophisticated tools for their analysis. During the past decade, the art of object finding in these simulations has hence developed into an important discipline itself. A multitude of codes based upon a huge variety of methods and techniques have been spawned yet the question remained as to whether or not they will provide the same (physical) information about the structures of interest. Here we summarize and extent previous work of the "halo finder comparison project": we investigate in detail the (possible) origin of any deviations across finders. To this extent we decipher…

Structure formationCosmology and Nongalactic Astrophysics (astro-ph.CO)Ciencias FísicasDark matterFOS: Physical sciencesAstrophysicsGALAXIES HALOESAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences//purl.org/becyt/ford/1 [https]0103 physical sciencesGalaxy formation and evolutionStatistical physics010303 astronomy & astrophysicsGalaxy rotation curveComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]COSMIC cancer database010308 nuclear & particles physicsAstronomy and AstrophysicsObservable//purl.org/becyt/ford/1.3 [https]AstronomíaGravitational lensSpace and Planetary ScienceLUMINOSITY FUNCTIONHaloGALAXIES EVOLUTION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]CIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic AstrophysicsGALAXIES STATISTICS
researchProduct

The KeV Majoron as a dark matter particle

1993

We consider a very weakly interacting KeV majoron as dark matter particle (DMP), which provides both the critical density $\rho_{cr} = 1.88 \times 10^{-29} h^{2}$ $g/cm^{3}$ and the galactic scale $M_{gal}$ $\sim m^{3}_{Pl}/m^{2}_{J} \sim 10^{12} M_{\odot} (m_{J}/1 KeV)^{-2}$ for galaxy formation. The majoron couples to leptons only through some new "directly interacting particles", called DIPS, and this provides the required smallness of the coupling constants. If the masses of these DIPS are greater than the scale $V_s$ characterizing the spontaneous violation of the global lepton symmetry they are absent at the corresponding phase transition ($T \sim V_s$) and the majorons are produced d…

Thermal equilibriumCoupling constantPhysicsNuclear and High Energy PhysicsParticle physicsPhase transitionAstrophysics::High Energy Astrophysical PhenomenaDark matterHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)NucleosynthesisGalaxy formation and evolutionMajoronLepton
researchProduct

The Gaia-ESO Survey: The inner disk, intermediate-age open cluster Trumpler 23

2017

Full list of authors: Overbeek, J. C.; Friel, E. D.; Donati, P.; Smiljanic, R.; Jacobson, H. R.; Hatzidimitriou, D.; Held, E. V.; Magrini, L.; Bragaglia, A.; Randich, S.; Vallenari, A.; Cantat-Gaudin, T.; Tautvaišienė, G.; Jiménez-Esteban, F.; Frasca, A.; Geisler, D.; Villanova, S.; Tang, B.; Muñoz, C.; Marconi, G. Carraro, G.; San Roman, I.; Drazdauskas, A.; Ženovienė, R.; Gilmore, G.; Jeffries, R. D.; Flaccomio, E.; Pancino, E.; Bayo, A.; Costado, M. T.; Damiani, F.; Jofré, P.; Monaco, L.; Prisinzano, L.; Sousa, S. G.; Zaggia, S.

open clusters and associations: individual: Trumpler 23stars: abundancesMetallicityFOS: Physical sciencesGalaxy: abundances; Galaxy: disk; Galaxy: formation; Open clusters and associations: individual: Trumpler 23; Stars: abundances; Astronomy and Astrophysics; Space and Planetary ScienceAstrophysics01 natural sciencesGalaxy: diskPhotometry (optics)0103 physical sciencesGalaxy formation and evolutionDisc010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QBPhysics010308 nuclear & particles physicsabundances [Galaxy]Astronomy and AstrophysicsGalactic planeAstrophysics - Astrophysics of GalaxiesRadial velocityStarsindividual: Trumpler 23 [Open clusters and associations]Astrophysics - Solar and Stellar Astrophysicsformation [Galaxy]Space and Planetary ScienceGalaxy: formationAstrophysics of Galaxies (astro-ph.GA)abundances [Stars]Galaxy: abundancesdisk [Galaxy]Open cluster
researchProduct