Search results for "genotype-by-environment"

showing 5 items of 5 documents

Elevated oxidative stress in pied flycatcher nestlings of eumelanic foster fathers under low rearing temperatures

2019

Striking variation in melanin coloration within natural populations is likely due to the different fitness outcomes of alternative phenotypes in varying environmental conditions. There are two types of melanin: eumelanins yield blackish hues, whereas pheomelanins yield reddish hues. The production of eumelanins requires low levels of glutathione (GSH), which is the most important intracellular antioxidant, whereas the production of pheomelanins requires high levels of GSH. We investigated the oxidative status of male pied flycatchers (Ficedula hypoleuca) with different degrees of melanin coloration under different temperatures during the nestling period. Moreover, we assessed the oxidative …

0106 biological sciencesMaleSELECTIONMELANINPhysiology030310 physiologyBASAL METABOLIC-RATEgenetic qualitymedicine.disease_cause01 natural sciencesNesting BehaviorMelaninchemistry.chemical_compoundGLUTATHIONEoxidative stressPasseriformesGene–environment interactionADAPTATIONGlutathione Transferasephenotypic quality0303 health sciencesTemperaturephenotypic variationenvironmental heterogeneityPhenotypeSexual selectionSexual selectionFemalelämpötilagenotype-by-environment interactionPhenotypic qualityTRAITSPLUMAGE COLORATIONOffspringZoologyAquatic ScienceBiology010603 evolutionary biologygenotyyppisecondary sexual trait03 medical and health sciencesmedicineAnimalsEXPOSUREkirjosieppoMolecular Biologyoksidatiivinen stressiEcology Evolution Behavior and SystematicsMelaninsSecondary sexual traitFicedulaGlutathioneFeathersbiology.organism_classificationlisääntyminenchemistrysukupuolivalintaInsect ScienceBasal metabolic ratePLEIOTROPYRADIATIONta1181Animal Science and ZoologyfenotyyppiOxidative stressJournal of Experimental Biology
researchProduct

Effects of environment and genotype on dispersal differ across departure, transfer and settlement in a butterfly metapopulation

2022

Active dispersal is driven by extrinsic and intrinsic factors at the three stages of departure, transfer and settlement. Most empirical studies capture only one stage of this complex process, and knowledge of how much can be generalized from one stage to another remains unknown. Here we use genetic assignment tests to reconstruct dispersal across 5 years and 232 habitat patches of a Glanville fritillary butterfly ( Melitaea cinxia ) metapopulation. We link individual dispersal events to weather, landscape structure, size and quality of habitat patches, and individual genotype to identify the factors that influence the three stages of dispersal and post-settlement survival. We found that ne…

DYNAMICSGenotypePopulation DynamicsperhosetEMIGRATIONgenotyyppiGeneral Biochemistry Genetics and Molecular Biologypatch qualitybutterflyAnimalsdispersaltäpläverkkoperhonenWeathergenotype-by-environment interactionsEcosystemGeneral Environmental ScienceEkologiPERSONALITYCONSEQUENCESgenetic assignment testsEcologyGeneral Immunology and MicrobiologyMELITAEA-CINXIAlevinneisyysGeneral MedicineGENEpopulaatioekologiafitnessASSIGNMENT TESTSHABITAT FRAGMENTATIONMETABOLIC-RATE1181 Ecology evolutionary biologypatchqualityGeneral Agricultural and Biological SciencesButterfliesleviäminenFRITILLARYProceedings of the Royal Society B: Biological Sciences
researchProduct

Variation in spawning time promotes genetic variability in population responses to environmental change in a marine fish.

2015

Common-garden experiments suggest that the response of Atlantic cod larvae to temperature differs among populations that spawn at different times of year. Populations appear to be adapted to the temperatures experienced during the larval stage at a small spatial scale, despite a lack of physical barriers to gene flow.

Environmental changePhysiologyPopulationManagement Monitoring Policy and LawBiologythermal adaptationGenetic variation14. Life underwaterGenetic variabilityGene–environment interactioneducationcommon-garden experimentNature and Landscape Conservationeducation.field_of_studyPhenotypic plasticityEcologyEcological Modelingfungiclimate changeGadus morhua13. Climate actionAtlantic codSpatial ecologySpatial variabilitygenotype-by-environment interactionResearch ArticleConservation physiology
researchProduct

Appearance before performance? : Nutritional constraints on life‐history traits, but not warning signal expression in aposematic moths

2020

1.Trade‐offs have been shown to play an important role in the divergence of mating strategies and sexual ornamentation, but their importance in explaining warning signal diversity has received less attention. In aposematic organisms, allocation costs of producing the conspicuous warning signal pigmentation under nutritional stress could potentially trade‐off with life‐history traits and maintain variation in warning colouration. 2. We studied this with an aposematic herbivore Arctia plantaginis (Arctiidae), whose larvae and adults show extensive variation in aposematic colouration. In larvae, less melanic colouration (i.e. larger orange patterns) produces a more efficient warning signal aga…

varoitusväriravintosignal evolutionplastisuusgenotype-by-environment interactionpariutuminendietphenotypic plasticitygenotyyppimelanin
researchProduct

Nonlinearities in plant RNA virus fitness

2012

Una de las mayores amenazas tanto para la salud humana y animal, como para la agronomía es la emergencia de nuevas enfermedades infecciosas, la mayoría de las cuales están causadas por los virus de RNA. La emergencia viral es un problema complejo que consista en la adquisición de la variación genética, por mutación o recombinación, dentro de la población viral en el huésped reservorio la cual podría facilitar la capacidad de infectar de manera eficiente nuevos huéspedes. Los virus de RNA presentan a una evolucionabilidad extraordinaria por sus grandes tamaños poblacionales, cortos tiempos de generación y altas tasas de mutación y recombinación. Comprender los mecanismos evolutivos que podrí…

virus evolutionepistasisgenome architecturegenotype-by-environmentUNESCO::CIENCIAS DE LA VIDA::Otras especialidades de la biologíafitness landscapesEmerging viruses; RNA viruses; Tobacco etch virus; Viral fitness; Generalism vs. specialism; Genotype-by-environment (G×E) interactions; Epistasis; Adaptive fitness landscapesdeleterious mutations:CIENCIAS DE LA VIDA::Virología [UNESCO]UNESCO::CIENCIAS DE LA VIDA::Genética ::Genética de poblacionesemerging viruses:CIENCIAS DE LA VIDA::Genética ::Genética de poblaciones [UNESCO]UNESCO::CIENCIAS DE LA VIDA::Virología:CIENCIAS DE LA VIDA::Otras especialidades de la biología [UNESCO]
researchProduct