Search results for "geomatic"
showing 10 items of 506 documents
Tree species recognition in species rich area using UAV-borne hyperspectral imagery and stereo-photogrammetric point cloud
2017
Abstract. Recognition of tree species and geospatial information of tree species composition is essential for forest management. In this study we test tree species recognition using hyperspectral imagery from VNIR and SWIR camera sensors in combination with 3D photogrammetric canopy surface model based on RGB camera stereo-imagery. An arboretum forest with a high number of tree species was used as a test area. The imagery was acquired from the test area using UAV-borne cameras. Hyperspectral imagery was calibrated for providing a radiometrically corrected reflectance mosaic, which was tested along with the original uncalibrated imagery. Alternative estimators were tested for predicting tree…
UAV SURVEY FOR THE ARCHAEOLOGICAL MAP OF LILYBAEUM (MARSALA, ITALY)
2019
Abstract. Collecting information and mapping are fundamental aspects of systematic archaeological excavation, documentation and interpretation. The process of recording physical evidence is the first step in the archaeological study with the goal to derive spatial and semantic information from the gathered and available data. Archaeological reports always include 2D maps, sections, data distribution and other spatial data. Indeed, the representation is inseparable from the archaeological practice, but this is undoubtedly a time-consuming activity. Nowadays, archaeologists can take advantages of various recording techniques to produce highly accurate 3D models and ortho-images of archaeologi…
GEOMATIC TECHNIQUES FOR THE COLONNADE STRUCTURAL ANALYSIS OF THE HISTORICAL “CHIARAMONTE STERI” BUILDING
2019
Abstract. The monitoring of building structures has an increasingly important role in the engineering field, above all because they are concerned with the impact that such structures have in the area where they were built. Often, when walking through the old town centres, we realize just how obsolete and dangerous some buildings (even historic-cultural ones) are. The interest of some local governments in this problem has led, in the last few years, to the study and the trying out of measuring and monitoring methods which, quickly and at low cost, allow to define the extent of the deformation and the degrade in an accurate and reliable way.The Courtyard of “Palazzo Steri - Chiaramonte” is co…
Spectral imaging from UAVs under varying illumination conditions
2013
Abstract. Rapidly developing unmanned aerial vehicles (UAV) have provided the remote sensing community with a new rapidly deployable tool for small area monitoring. The progress of small payload UAVs has introduced greater demand for light weight aerial payloads. For applications requiring aerial images, a simple consumer camera provides acceptable data. For applications requiring more detailed spectral information about the surface, a new Fabry-Perot interferometer based spectral imaging technology has been developed. This new technology produces tens of successive images of the scene at different wavelength bands in very short time. These images can be assembled in spectral data cubes wit…
Yielding of a quartz sand from saturated to dry state
2020
The paper presents the results of an experimental work where we analyse the behaviour of an unsaturated quartz sand in a wide range of degree of saturation (from saturated to dry state). The possibility of anticipating the hydro-mechanical behaviour of the soils when they approach the dry state is fundamental in many areas. An extensive experimental program, including controlled-suction and constant water content oedometric tests, was carried out to deeply analyse the water retention behaviour and the relationship between the yield stress and suction (Loading-Collapse curve). All elasto-plastic models provide a monotonically increase of the yield stress with suction. This assumption implies…
A physical model for the interaction between unsaturated soils and retaining structures
2020
Temporary and permanent retaining structures interact with soils that are usually in unsaturated conditions. In this work, a 1g-scale physical model is presented to investigate the interactions between retaining walls and unsaturated soils. The physical model is equipped with a water-filled hydraulic cylinder connected to a pressure-volume controller to measure the horizontal component of the later earth thrust and high capacity tensiometers to measure soil matric suction. A system of low-friction linear guideways has been installed at the base of the wall-model. The failure surface is observed through a 3 cm thick glass wall on one side of the container. A series of images are acquired dur…
Numerical investigation on water exchange of shale samples
2020
Interest in the hydraulic and mechanical characterization of shales has grown in recent years, because of their application in the context of energy geotechnics. In the frame of nuclear waste disposal shales are considered as host formations for the placements of nuclear waste at high depths. In the frame of hydrocarbon production they are considered as unconventional reservoirs, from which extracting natural gas. Understanding how fluids flow through shales is then a key aspect for both fields of application. This paper focuses on the analysis of the transport of water vapour through laboratory samples. After reviewing the balance and flow laws that govern the transport of fluid in unsatur…
Hydro-mechanical behaviour of a sandy silt from a river embankment
2020
The paper presents the results of an experimental campaign aimed at characterizing the hydro-mechanical behaviour of a sandy silt from a river embankment. Due to continuous river level fluctuations and changing climatic and environmental conditions, flood embankment materials experience frequent variations in degree of saturation and suction values. Such variations strongly impact the earthwork performance both in terms of seepage and stability conditions. For these reasons, a detailed characterization of the material behaviour in unsaturated conditions was carried out. Experiments were designed in order to highlight the response of the involved soil in terms of changes in matric suction an…
Tree Species Identification Using 3D Spectral Data and 3D Convolutional Neural Network
2018
In this study we apply 3D convolutional neural network (CNN) for tree species identification. Study includes the three most common Finnish tree species. Study uses a relatively large high-resolution spectral data set, which contains also a digital surface model for the trees. Data has been gathered using an unmanned aerial vehicle, a framing hyperspectral imager and a regular RGB camera. Achieved classification results are promising by with overall accuracy of 96.2 % for the classification of the validation data set. nonPeerReviewed
Noise Reduction and Gap Filling of fAPAR Time Series Using an Adapted Local Regression Filter
2014
Time series of remotely sensed data are an important source of information for understanding land cover dynamics. In particular, the fraction of absorbed photosynthetic active radiation (fAPAR) is a key variable in the assessment of vegetation primary production over time. However, the fAPAR series derived from polar orbit satellites are not continuous and consistent in space and time. Filtering methods are thus required to fill in gaps and produce high-quality time series. This study proposes an adapted (iteratively reweighted) local regression filter (LOESS) and performs a benchmarking intercomparison with four popular and generally applicable smoothing methods: Double Logistic (DLOG), sm…