Search results for "glia"

showing 10 items of 1274 documents

Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus

2018

Astroglial type‐1 cannabinoid (CB1) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so‐called tripartite synapse formed by pre‐ and post‐synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock‐out mice lacking astroglial CB1 receptor expression …

0301 basic medicineCannabinoid receptormedicine.medical_treatmentImmunoelectron microscopyNeurotransmissionBiologyHippocampusImmunoenzyme Techniques03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptor Cannabinoid CB1Glial Fibrillary Acidic ProteinTripartite synapsemedicineAnimalsMicroscopy ImmunoelectronReceptorMice KnockoutGlial fibrillary acidic proteinmusculoskeletal neural and ocular physiologyfood and beveragesMitochondriaCell biology030104 developmental biologymedicine.anatomical_structurenervous systemNeurologyAstrocytesbiology.proteinlipids (amino acids peptides and proteins)Cannabinoidpsychological phenomena and processes030217 neurology & neurosurgeryAstrocyte
researchProduct

Taking Advantage of Nature’s Gift: Can Endogenous Neural Stem Cells Improve Myelin Regeneration?

2016

Irreversible functional deficits in multiple sclerosis (MS) are directly correlated to axonal damage and loss. Neurodegeneration results from immune-mediated destruction of myelin sheaths and subsequent axonal demyelination. Importantly, oligodendrocytes, the myelinating glial cells of the central nervous system, can be replaced to some extent to generate new myelin sheaths. This endogenous regeneration capacity has so far mainly been attributed to the activation and recruitment of resident oligodendroglial precursor cells. As this self-repair process is limited and increasingly fails while MS progresses, much interest has evolved regarding the development of remyelination-promoting strateg…

0301 basic medicineCell typeMultiple Sclerosisgliaadult neural stem cellsoligodendrocytesReviewBiologyRegenerative MedicineCatalysisInorganic ChemistryWhite matterlcsh:Chemistry03 medical and health sciencesMyelin0302 clinical medicineNeural Stem CellsmedicineAnimalsHumansPhysical and Theoretical ChemistryRemyelinationMolecular Biologylcsh:QH301-705.5SpectroscopyMyelin SheathMultiple sclerosisRegeneration (biology)Organic ChemistryEndogenous regenerationGeneral Medicinedifferentiationmedicine.diseaseNeural stem cellComputer Science ApplicationsNerve Regeneration030104 developmental biologymedicine.anatomical_structureremyelinationlcsh:Biology (General)lcsh:QD1-999nervous systemprecursor cellsImmunologyNeurosciencecell fate determinationwhite matter030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct

MOBP levels are regulated by Fyn kinase and affect the morphological differentiation of oligodendrocytes.

2015

Oligodendrocytes are the myelinating glial cells of the central nervous system (CNS). Myelin is formed by extensive wrapping of oligodendroglial processes around axonal segments which ultimately allows a rapid saltatory conduction of action potentials within the CNS and sustains neuronal health. The non-receptor tyrosine kinase Fyn is an important signaling molecule in oligodendrocytes. It controls the morphological differentiation of oligodendrocytes and is an integrator of axon-glial signaling cascades leading to localized synthesis of Myelin Basic Protein (MBP) which is essential for myelin formation. The abundant Myelin-Associated Oligodendrocytic Basic Protein (MOBP) resembles MBP in s…

0301 basic medicineCellular differentiationCentral nervous systemGene ExpressionBiologyProto-Oncogene Proteins c-fyn03 medical and health sciencesMyelinFYNmedicineAnimalsCell ShapeCells CulturedSaltatory conductionCell DifferentiationCell BiologyOligodendrocyteMyelin basic proteinCell biologyMice Inbred C57BLOligodendroglia030104 developmental biologymedicine.anatomical_structurenervous systemBiochemistryProtein Biosynthesisbiology.proteinTyrosine kinaseMyelin ProteinsJournal of cell science
researchProduct

Neurofibromatosis type 2 tumor suppressor protein is expressed in oligodendrocytes and regulates cell proliferation and process formation.

2017

The neurofibromatosis type 2 (NF2) tumor suppressor protein Merlin functions as a negative regulator of cell growth and actin dynamics in different cell types amongst which Schwann cells have been extensively studied. In contrast, the presence and the role of Merlin in oligodendrocytes, the myelin forming cells within the CNS, have not been elucidated. In this work, we demonstrate that Merlin immunoreactivity was broadly distributed in the white matter throughout the central nervous system. Following Merlin expression during development in the cerebellum, Merlin could be detected in the cerebellar white matter tract at early postnatal stages as shown by its co-localization with Olig2-positi…

0301 basic medicineCentral Nervous SystemCytoplasmlcsh:MedicineNervous SystemMyelinMiceCell MovementAnimal CellsCerebellumMedicine and Health SciencesNeurofibromatosis type 2lcsh:ScienceNeuronsStainingCerebral CortexNeurofibromin 2MultidisciplinarybiologyCell StainingBrainCell migrationCell biologyOligodendrogliamedicine.anatomical_structureGenetic DiseasesCell ProcessesAnatomyCellular TypesCellular Structures and OrganellesResearch ArticleCell typeNeurofibromatosis 2NeurogenesisNerve Tissue ProteinsTransfectionResearch and Analysis MethodsCell Line03 medical and health sciencesmedicineAnimalsImmunohistochemistry TechniquesCell ProliferationCell NucleusClinical GeneticsCell growthAutosomal Dominant Diseaseslcsh:RBiology and Life SciencesCell Biologymedicine.diseaseOligodendrocyteMyelin basic proteinMerlin (protein)Mice Inbred C57BLHistochemistry and Cytochemistry Techniques030104 developmental biologySpecimen Preparation and TreatmentAstrocytesNeurofibromatosis Type 2Cellular Neurosciencebiology.proteinImmunologic Techniqueslcsh:QSchwann CellsNeurosciencePLoS ONE
researchProduct

Overview of General and Discriminating Markers of Differential Microglia Phenotypes.

2020

Inflammatory processes and microglia activation accompany most of the pathophysiological diseases in the central nervous system. It is proven that glial pathology precedes and even drives the development of multiple neurodegenerative conditions. A growing number of studies point out the importance of microglia in brain development as well as in physiological functioning. These resident brain immune cells are divergent from the peripherally infiltrated macrophages, but their precise in situ discrimination is surprisingly difficult. Microglial heterogeneity in the brain is especially visible in their morphology and cell density in particular brain structures but also in the expression of cell…

0301 basic medicineCentral nervous systemInflammationReviewBiologylcsh:RC321-571M1/M2 phenotype03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineImmune systemneurotoxicitymedicineCytotoxic T celllcsh:Neurosciences. Biological psychiatry. NeuropsychiatrypolarizationMicrogliaRegeneration (biology)Neurotoxicityinfiltrating macrophagesmedicine.diseasePhenotype030104 developmental biologymedicine.anatomical_structureinflammationCellular Neuroscienceregenerationmicroglial heterogeneitymedicine.symptomNeuroscience030217 neurology & neurosurgeryFrontiers in cellular neuroscience
researchProduct

NG2/CSPG4 and progranulin in the posttraumatic glial scar.

2018

Traumatic injury of the central nervous system is one of the leading causes of death and disability in young adults. Failure of regeneration is caused by autonomous neuronal obstacles and by formation of the glial scar, which is essential to seal the injury but also constitutes a barrier for regrowing axons. The scar center is highly inflammatory and populated by NG2+ glia, whereas astrocytes form the sealing border and trap regrowing axons, suggesting that the non-permissive environment of activated astrocytes and extracellular matrix components is one of the reasons for the regenerative failure. Particularly, secreted chondroitin-sulfate proteoglycans, CSPGs, of the lectican family hinder…

0301 basic medicineCentral nervous systemPerlecanCell CommunicationBiologyGlial scarExtracellular matrix03 medical and health scienceschemistry.chemical_compoundCicatrix0302 clinical medicineProgranulinsmedicineLecticanAnimalsHumansMolecular BiologyMicrogliaReceptors NotchMembrane ProteinsCell biology030104 developmental biologymedicine.anatomical_structurenervous systemchemistryChondroitin Sulfate ProteoglycansChondroitin sulfate proteoglycanBrain InjuriesImmunologybiology.proteinSynaptic signalingNeuroglia030217 neurology & neurosurgeryHeparan Sulfate ProteoglycansSignal TransductionMatrix biology : journal of the International Society for Matrix Biology
researchProduct

Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis

2018

Background/aims Multiple sclerosis (MS) is a prototypical autoimmune central nervous system (CNS) disease. Particularly progressive forms of MS (PMS) show significant neuroaxonal damage as consequence of demyelination and neuronal hyperexcitation. Immuno-modulatory treatment strategies are beneficial in relapsing MS (RMS), but mostly fail in PMS. Pregabalin (Lyrica®) is prescribed to MS patients to treat neuropathic pain. Mechanistically, it targets voltage-dependent Ca2+ channels and reduces harmful neuronal hyperexcitation in mouse epilepsy models. Studies suggest that GABA analogues like pregabalin exert neuroprotective effects in animal models of ischemia and trauma. Methods We tested t…

0301 basic medicineCentral nervous systemPregabalinPregabalinPharmacologyNeuroprotectionlcsh:RC346-429Multiple sclerosis03 medical and health sciencesCellular and Molecular NeuroscienceDevelopmental Neurosciencemedicinelcsh:Neurology. Diseases of the nervous systemExperimental autoimmune encephalomyelitisMicrogliaVoltage-dependent calcium channelbusiness.industryMultiple sclerosislcsh:QP351-495Experimental autoimmune encephalomyelitismedicine.diseaseNeuroprotectionlcsh:Neurophysiology and neuropsychology030104 developmental biologymedicine.anatomical_structureNeurologyNeuropathic painbusinessmedicine.drugNeurosignals
researchProduct

2018

Easy-to-achieve interventions to promote healthy longevity are desired to diminish the incidence and severity of infections, as well as associated disability upon recovery. The dietary supplement palmitoylethanolamide (PEA) exerts anti-inflammatory and neuroprotective properties. Here, we investigated the effect of prophylactic PEA on the early immune response, clinical course, and survival of old mice after intracerebral E. coli K1 infection. Nineteen-month-old wild type mice were treated intraperitoneally with two doses of either 0.1 mg PEA/kg in 250 μl vehicle solution (n = 19) or with 250 μl vehicle solution only as controls (n = 19), 12 h and 30 min prior to intracerebral E. coli K1 in…

0301 basic medicineChemokineImmunologySpleenInflammationPharmacologyNeuroprotection03 medical and health scienceschemistry.chemical_compound0302 clinical medicineImmune systemmedicineImmunology and Allergy2. Zero hungerPalmitoylethanolamidebiologyMicrogliabusiness.industryfood and beverages3. Good health030104 developmental biologymedicine.anatomical_structurechemistrybiology.proteinArachidonic acidmedicine.symptombusiness030217 neurology & neurosurgeryFrontiers in Immunology
researchProduct

CD14 is a key organizer of microglial responses to CNS infection and injury

2015

Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia. First, it confers an up to 100-fold higher LPS sensitivity compared to peripheral macrophages to enable efficient proinflammatory cytokine induction. Second, CD14 prevents excessive responses to massive LPS challenges via an interferon β-mediated feedback. Third, CD14 is mandatory for microglial reactions to tissue damage-associated signals. In mice, these functions are essential for balanced …

0301 basic medicineChemokineToll-like receptorInnate immune systembiologyMicrogliaCD14Proinflammatory cytokine03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biologymedicine.anatomical_structureImmune systemNeurologyImmunologybiology.proteinTLR4medicineGlia
researchProduct

Single-cell profiling reveals GPCR heterogeneity and functional patterning during neuroinflammation.

2017

GPCR expression was intensively studied in bulk cDNA of leukocyte populations, but limited data are available with respect to expression in individual cells. Here, we show a microfluidic-based single-cell GPCR expression analysis in primary T cells, myeloid cells, and endothelial cells under naive conditions and during experimental autoimmune encephalomyelitis, the mouse model of multiple sclerosis. We found that neuroinflammation induces characteristic changes in GPCR heterogeneity and patterning, and we identify various functionally relevant subgroups with specific GPCR profiles among spinal cord-infiltrating CD4 T cells, macrophages, microglia, or endothelial cells. Using GPCRs CXCR4, S1…

0301 basic medicineChemokinebiologyMicrogliaExperimental autoimmune encephalomyelitisCellInflammationGeneral Medicinemedicine.diseaseCell biology03 medical and health sciences030104 developmental biologymedicine.anatomical_structureImmune systemmedicinebiology.proteinmedicine.symptomNeuroinflammationG protein-coupled receptorResearch ArticleJCI insight
researchProduct