Search results for "gluon"

showing 10 items of 697 documents

Structure of longitudinal chromomagnetic fields in high energy collisions

2014

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial fields correspond to a color field condensate exhibiting domain-like structure over distance scales of order the saturation scale. At later times universal scaling emerges at large distances for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop to the two-point correlator of magnetic fields.

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial like structure over distance scales of oder the saturation scale. At later times universal scaling emerges at large distances for all ensembles with a nontrivial critical exponent. Finally we compare the resulats for the Wilson loop to the two-point correlator of magnetic fields. (C) 2014 The Authors. Published by Elsevier BV This is an open access article under the CC BY licenseNuclear and High Energy PhysicsWilson loopLARGE NUCLEINuclear TheoryField (physics)FOS: Physical sciences114 Physical sciences01 natural sciencesColor-glass condensateRENORMALIZATION-GROUPNuclear Theory (nucl-th)GLUON DISTRIBUTION-FUNCTIONSHigh Energy Physics - Phenomenology (hep-ph)Light cone0103 physical sciencesSCATTERINGGauge theory010306 general physicsSMALL-XEffective actionPhysicsCORRELATORSta114010308 nuclear & particles physicsCOLOR GLASS CONDENSATERenormalization groupEVOLUTIONJIMWLK EQUATIONHigh Energy Physics - PhenomenologySATURATIONQuantum electrodynamicsCritical exponentPhysics Letters B
researchProduct

Nonlinear corrections to the DGLAP equations in view of the HERA data

2002

The effects of the first nonlinear corrections to the DGLAP evolution equations are studied by using the recent HERA data for the structure function $F_2(x,Q^2)$ of the free proton and the parton distributions from CTEQ5L and CTEQ6L as a baseline. By requiring a good fit to the H1 data, we determine initial parton distributions at $Q_0^2=1.4$ GeV$^2$ for the nonlinear scale evolution. We show that the nonlinear corrections improve the agreement with the $F_2(x,Q^2)$ data in the region of $x\sim 3\cdot 10^{-5}$ and $Q^2\sim 1.5$ GeV$^2$ without paying the price of obtaining a worse agreement at larger values of $x$ and $Q^2$. For the gluon distribution the nonlinear effects are found to play…

PhysicsNuclear and High Energy PhysicsParticle physicsProton010308 nuclear & particles physicsFOS: Physical sciencesPartonScale (descriptive set theory)HERA01 natural sciencesGluonHigh Energy Physics - PhenomenologyNonlinear systemHigh Energy Physics - Phenomenology (hep-ph)Distribution (mathematics)DGLAP0103 physical sciences010306 general physicsParticle Physics - Phenomenology
researchProduct

Polarization of Λ and ¯Λ Hyperons along the Beam Direction in Pb-Pb Collisions at √sNN = 5.02 TeV

2022

The polarization of the Λ and ¯Λ hyperons along the beam (z) direction, Pz, has been measured in Pb-Pb collisions at √sNN = 5.02TeV recorded with ALICE at the Large Hadron Collider (LHC). The largest contribution to Pz comes from elliptic flow induced vorticity and can be characterized by the second Fourier sine coefficient Pz,s2=⟨Pzsin(2φ−2Ψ2)⟩, where φ is the hyperon azimuthal emission angle, and Ψ2 is the elliptic flow plane angle. We report the measurement of Pz,s2 for different collision centralities, and in the 30-50% centrality interval as a function of the hyperon transverse momentum and rapidity. The Pz,s2 is positive similarly as measured by the STAR Collaboration in Au-Au collisi…

kvarkki-gluoniplasmahiukkasfysiikkaydinfysiikka
researchProduct

Improving the kinetic couplings in lattice nonrelativistic QCD

2019

We improve the non-relativistic QCD (NRQCD) action by comparing the dispersion relation to that of the continuum through $\mathcal{O}(p^6)$ in perturbation theory. The one-loop matching coefficients of the $\mathcal{O}(p^4)$ kinetic operators are determined, as well as the scale at which to evaluate $\alpha_s$ in the $V$-scheme for each quantity. We utilise automated lattice perturbation theory using twisted boundary conditions as an infrared regulator. The one-loop radiative corrections to the mass renormalisation, zero-point energy and overall energy-shift of an NRQCD $b$-quark are also found. We also explore how a Fat$3$-smeared NRQCD action and changes of the stability parameter $n$ aff…

Quantum chromodynamicsQuarkPhysics010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical scienceshep-latKinetic energy01 natural sciencesComputer Science::Digital LibrariesGluonRenormalizationHigh Energy Physics - LatticeLattice (order)0103 physical sciencesHigh Energy Physics::ExperimentVacuum polarization010306 general physicsGluon fieldMathematical physicsPhysical Review
researchProduct

Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at sNN=5.02 TeV

2020

The differential invariant yield as a function of transverse momentum (pT) of electrons from semileptonic heavy-flavour hadron decays was measured at midrapidity in central (0–10%), semi-central (30–50%) and peripheral (60–80%) lead–lead (Pb–Pb) collisions at sNN=5.02 TeV in the pT intervals 0.5–26 GeV/c (0–10% and 30–50%) and 0.5–10 GeV/c (60–80%). The production cross section in proton–proton (pp) collisions at s=5.02 TeV was measured as well in 0.5<pT<10 GeV/c and it lies close to the upper band of perturbative QCD calculation uncertainties up to pT=5 GeV/c and close to the mean value for larger pT. The modification of the electron yield with respect to what is expected for an inco…

QuarkSemileptonic decayPhysicsNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHadronPerturbative QCDParton01 natural sciencesNuclear physics0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentCharm (quantum number)Nuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Heavy quarkonium: progress, puzzles, and opportunities

2011

A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flo…

High Energy Physics - TheoryNuclear TheoryPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeTevatronB-C MESON; QCD SUM-RULES; NUCLEUS COLLISIONSAtomic01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Broad spectrumHigh Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicseffective field theoryBatavia TEVATRON CollNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentBrookhaven RHIC CollQuantum chromodynamicsPhysicsQuantum PhysicsLarge Hadron ColliderHigh Energy Physics - Lattice (hep-lat)lattice field theoryHERAQuarkoniumNuclear & Particles PhysicsCLEOB-C MESONHigh Energy Physics - PhenomenologyDESY HERA Stordecay [quarkonium]Jefferson LabParticle physicsFOS: Physical sciencesnonrelativistic [quantum chromodynamics]DeconfinementB-factoryNuclear Theory (nucl-th)High Energy Physics - Latticescattering [heavy ion]QCD SUM-RULES0103 physical sciencesNuclearddc:530010306 general physicsEngineering (miscellaneous)Particle Physics - Phenomenologyproduction [quarkonium]BES010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyplasma [quark gluon]FísicaMoleculartetraquarkHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]hadron spectroscopy [meson]hadron spectroscopy [quarkonium]High Energy Physics::Experimentheavy [quarkonium]NUCLEUS COLLISIONSThe European Physical Journal C
researchProduct

Non-cancellation of electroweak logarithms in high-energy scattering

2014

We study electroweak Sudakov corrections in high energy scattering, and the cancellation between real and virtual Sudakov corrections. Numerical results are given for the case of heavy quark production by gluon collisions involving the rates $gg \to t \bar t, b \bar b, t \bar b W, t \bar t Z, b \bar b Z, t \bar t H, b \bar b H$. Gauge boson virtual corrections are related to real transverse gauge boson emission, and Higgs virtual corrections to Higgs and longitudinal gauge boson emission. At the LHC, electroweak corrections become important in the TeV regime. At the proposed 100 TeV collider, electroweak interactions enter a new regime, where the corrections are very large and need to be re…

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsGauge bosonLarge Hadron ColliderScatteringHigh Energy Physics::LatticeElectroweak interactionHigh Energy Physics::PhenomenologyFOS: Physical scienceslcsh:QC1-999law.inventionGluonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)lawHiggs bosonHigh Energy Physics::ExperimentColliderlcsh:PhysicsPhysics Letters B
researchProduct

Hot spots and gluon field fluctuations as causes of eccentricity in small systems

2021

We calculate eccentricities in high energy proton-nucleus collisions, by calculating correlation functions of the energy density field of the Glasma immediately after the collision event at proper time tau = 0. We separately consider the effects of color charge and geometrical hot spot fluctuations, analytically performing the averages over both in a dilute-dense limit. We show that geometric fluctuations of hot spots inside the proton are the dominant source of eccentricity whereas color charge fluctuations only give a negligible correction. The size and number of hot spots are the most important parameters characterizing the eccentricities.

Nuclear TheoryField (physics)ProtonAZIMUTHAL ANISOTROPIESFLOWmedia_common.quotation_subjectFOS: Physical sciencesHot spot (veterinary medicine)hiukkasfysiikka114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesProper timeEccentricity (behavior)LONG-RANGEHARMONICSNuclear Experiment010306 general physicsPLUS PB COLLISIONSGluon fieldmedia_commonPROTON-LEAD COLLISIONSPhysics010308 nuclear & particles physicskvarkki-gluoniplasmaANGULAR-CORRELATIONSComputational physicsHigh Energy Physics - PhenomenologyNEAR-SIDEAstrophysics::Earth and Planetary AstrophysicsHIGH TRANSVERSE-MOMENTUMPPBEvent (particle physics)Color chargePhysical Review D
researchProduct

Forward dijets in proton-nucleus collisions at next-to-leading order: the real corrections

2021

Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the "real" next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in our previous paper. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO …

High Energy Physics - Theorydijet: productionNuclear and High Energy PhysicsParticle physicsNuclear TheoryProton[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]splittingFOS: Physical sciencescollinearParton01 natural sciencesColor-glass condensateNuclear Theory (nucl-th)DGLAP equationHigh Energy Physics - Phenomenology (hep-ph)FactorizationfactorizationNLO Computations0103 physical sciencesRadiative transferEffective field theoryradiative correctionlcsh:Nuclear and particle physics. Atomic energy. Radioactivitypartonheavy ion phenomenology010306 general physicsp nucleus: scatteringPhysicsNLO computationshybrid010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]higher-order: 1Heavy Ion PhenomenologyGluonHigh Energy Physics - PhenomenologyDGLAPHigh Energy Physics - Theory (hep-th)kinematics[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensatelcsh:QC770-798
researchProduct

Impact of dijet and D-meson data from 5.02 TeV p+Pb collisions on nuclear PDFs

2020

We discuss the new constraints on gluon parton distribution function (PDF) in lead nucleus, derivable with the Hessian PDF reweighting method from the 5.02 TeV p+Pb measurements of dijet (CMS) and $D^0$-meson (LHCb) nuclear modification ratios. The impact is found to be significant, placing stringent constraints in the mid- and previously unconstrained small-$x$ regions. The CMS dijet data confirm the existence of gluon anti-shadowing and the onset of small-$x$ shadowing, as well as reduce the gluon PDF uncertainties in the larger-$x$ region. The gluon constraints from the LHCb $D^0$ data, reaching down to $x \sim 10^{-5}$ and derived in a NLO perturbative QCD approach, provide a remarkable…

Hessian matrixNuclear and High Energy PhysicsParticle physicsdijet productionNuclear TheoryFOS: Physical sciencesnuclear parton distribution functionPartonopen heavy flavour114 Physical sciences7. Clean energy01 natural sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesD meson010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyPerturbative QCDGluonUniversality (dynamical systems)proton–nucleus collisionHigh Energy Physics - PhenomenologyDistribution functionDGLAPsymbolsHigh Energy Physics::Experiment
researchProduct