Search results for "gluon"

showing 10 items of 697 documents

Measurement of beauty production via non-prompt D0 mesons in Pb-Pb collisions at √sNN = 5.02 TeV

2022

The production of non-prompt D0 mesons from beauty-hadron decays was measured at midrapidity (|y| 5 GeV/c in the 0–10% central Pb-Pb collisions. The data are described by models that include both collisional and radiative processes in the calculation of beauty-quark energy loss in the quark-gluon plasma, and quark recombination in addition to fragmentation as a hadronisation mechanism. The ratio of the non-prompt to prompt D0-meson RAA is larger than unity for pT> 4 GeV/c in the 0–10% central Pb-Pb collisions, as predicted by models in which beauty quarks lose less energy than charm quarks in the quark-gluon plasma because of their larger mass. [Figure not available: see fulltext.]

Nuclear and High Energy PhysicsHeavy Ion ExperimentskvarkitHeavy Quark ProductionhiukkasfysiikkaQuark Gluon Plasmaydinfysiikka
researchProduct

Anisotropic flow of identified hadrons in Xe-Xe collisions at √sNN = 5.44 TeV

2021

Measurements of elliptic (v2) and triangular (v3) flow coefficients of π±, K±, p+p¯, K0S, and Λ+Λ¯ obtained with the scalar product method in Xe-Xe collisions at √sNN = 5.44 TeV are presented. The results are obtained in the rapidity range |y| < 0.5 and reported as a function of transverse momentum, pT, for several collision centrality classes. The flow coefficients exhibit a particle mass dependence for pT < 3 GeV/c, while a grouping according to particle type (i.e., meson and baryon) is found at intermediate transverse momenta (3 < pT < 8 GeV/c). The magnitude of the baryon v2 is larger than that of mesons up to pT = 6 GeV/c. The centrality dependence of the shape evolution of the pT-diff…

Nuclear and High Energy PhysicsHeavy Ion Experimentskvarkki-gluoniplasmaHigh Energy Physics::ExperimenthiukkasfysiikkaNuclear Experimentydinfysiikka
researchProduct

New constraints for QCD matter from improved Bayesian parameter estimation in heavy-ion collisions at LHC

2021

The transport properties of quark-gluon plasma created in relativistic heavy-ion collisions are quantified by an improved global Bayesian analysis using the CERN Large Hadron Collider Pb–Pb data at sNN=2.76 and 5.02 TeV. The results show that the uncertainty of the extracted transport coefficients is significantly reduced by including new sophisticated collective flow observables from two collision energies for the first time. This work reveals the stronger temperature dependence of specific shear viscosity, a lower value of specific bulk viscosity, and a higher hadronization switching temperature than in the previous studies. The sensitivity analysis confirms that the precision measurement…

Nuclear and High Energy PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)kvarkki-gluoniplasmaFOS: Physical sciencesHigh Energy Physics::Experimentkvanttiväridynamiikkahep-phhiukkasfysiikkaNuclear Experiment114 Physical sciencesParticle Physics - PhenomenologyPhysics Letters
researchProduct

Systematics of strong nuclear amplification of gluon saturation from exclusive vector meson production in high energy electron–nucleus collisions

2017

We show that gluon saturation gives rise to a strong modification of the scaling in both the nuclear mass number $A$ and the virtuality $Q^2$ of the vector meson production cross-section in exclusive deep-inelastic scattering off nuclei. We present qualitative analytic expressions for how the scaling exponents are modified as well as quantitative predictions that can be tested at an Electron-Ion Collider.

Nuclear and High Energy PhysicsNuclear TheoryNuclear TheoryFOS: Physical sciencesElectron01 natural sciences7. Clean energyNuclear Theory (nucl-th)Nuclear physicssystematics of strong nuclear amplificationHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesmedicineVector meson010306 general physicsNuclear ExperimentScalingMass numberPhysicsta114010308 nuclear & particles physicsScatteringDeep inelastic scatteringlcsh:QC1-999GluonHigh Energy Physics - Phenomenologymedicine.anatomical_structureHigh Energy Physics::ExperimentNucleuslcsh:Physicsgluon saturationPhysics Letters B
researchProduct

Probing chemical freeze-out criteria in relativistic nuclear collisions with coarse grained transport simulations

2020

We introduce a novel approach based on elastic and inelastic scattering rates to extract the hyper-surface of the chemical freeze-out from a hadronic transport model in the energy range from E$_\mathrm{lab}=1.23$ AGeV to $\sqrt{s_\mathrm{NN}}=62.4$ GeV. For this study, the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model combined with a coarse-graining method is employed. The chemical freeze-out distribution is reconstructed from the pions through several decay and re-formation chains involving resonances and taking into account inelastic, pseudo-elastic and string excitation reactions. The extracted average temperature and baryon chemical potential are then compared to statistic…

Nuclear and High Energy PhysicsNuclear TheoryNuclear TheoryHadronFOS: Physical scienceshiukkasfysiikkaStrangenessInelastic scattering53001 natural sciencesNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)Pion0103 physical sciencesddc:530Nuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyBaryonHigh Energy Physics - PhenomenologyQuark–gluon plasmarelativistic nuclear collisionsHigh Energy Physics::ExperimentydinfysiikkaEnergy (signal processing)LeptonThe European Physical Journal A
researchProduct

On the strength of the U A (1) anomaly at the chiral phase transition in N f = 2 QCD

2016

We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the split…

Nuclear and High Energy PhysicsNuclear TheorySpontaneous symmetry breakingHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciences01 natural sciencesNuclear Theory (nucl-th)PionHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsMass screeningPhysicsQuantum chromodynamicsIsovectorCondensed matter physics010308 nuclear & particles physicsTransition temperatureMESON SCREENING MASSES; HIGH-TEMPERATURE PHASE; QUARK-GLUON PLASMA; LATTICE QCD; WILSON FERMIONS; HADRONIC SPECTRUM; O(A) IMPROVEMENT; U(1)(A) SYMMETRY; GAUGE-THEORIES; STRANGE QUARK; Global Symmetries; Lattice QCD; Phase Diagram of QCD; Spontaneous Symmetry BreakingHigh Energy Physics - Lattice (hep-lat)ddc:530Lattice QCD530 PhysikPseudoscalarHigh Energy Physics - Phenomenology
researchProduct

Jet energy scale determination in the D0 experiment

2013

The calibration of jet energy measured in the \DZero detector is presented, based on ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. Jet energies are measured using a sampling calorimeter composed of uranium and liquid argon as the passive and active media, respectively. This paper describes the energy calibration of jets performed with photon+jet, Z+jet and dijet{} events, with jet transverse momentum pT &gt; 6 GeV and pseudorapidity range |eta| &lt; 3.6. The corrections are measured separately for data and simulation, achieving a precision of 1.4%-1.8% for jets in the central part of the calorimeter and up to 3.5% for the jets with pseudorapidity…

Nuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaTevatronFOS: Physical sciencesParton7. Clean energy01 natural scienceslaw.inventionHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsColliderNuclear ExperimentInstrumentationPhysicsJet (fluid)Calorimeter (particle physics)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGluonPseudorapidityExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::Experiment
researchProduct

Multiplicity dependence of mean transverse momentum in $e^+e^-$ annihilations at LEP energies

1992

A strong increase of the mean transverse momentum [p(t)] with the number of charged particles n(ch) is observed in e+e- annihilations into hadrons at LEP energies, The effect resembles correlations observed in hadron-hadron interactions. In e+e- annihilations the [p(t)] and n(ch) correlations can be accounted for by gluon radiation.

Nuclear and High Energy PhysicsParticle physicsCOLLISIONSElectron–positron annihilationHadronNuclear TheoryISR ENERGIESANTI-PROTON COLLIDER; ISR ENERGIES; COLLISIONS; SPECTRA; EVENTS; MATTER; QCDRadiation01 natural sciencesANTI-PROTON COLLIDERNuclear physicsEVENTS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SPECTRAMultiplicity (chemistry)010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyQCDCharged particleGluonTransverse momentumFísica nuclearHigh Energy Physics::ExperimentMATTERParticle Physics - Experiment
researchProduct

A QCD analysis of LHCb D-meson data in p plus Pb collisions

2020

We scrutinize the recent LHCb data for D$^0$-meson production in p+Pb collisions within a next-to-leading order QCD framework. Our calculations are performed in the SACOT-$m_{\rm T}$ variant of the general-mass variable-flavour-number scheme (GM-VFNS), which has previously been shown to provide a realistic description of the LHC p+p data. Using the EPPS16 and nCTEQ15 nuclear parton distribution functions (PDFs) we show that a very good agreement is obtained also in the p+Pb case both for cross sections and nuclear modification ratios in the wide rapidity range covered by the LHCb data. Encouraged by the good correspondence, we quantify the impact of these data on the nuclear PDFs by the Hes…

Nuclear and High Energy PhysicsParticle physicsFOS: Physical sciencesPartonhiukkasfysiikka01 natural sciences114 Physical sciencesHigh Energy Physics - Phenomenology (hep-ph)Factorization0103 physical sciencesD mesonRapiditylcsh:Nuclear and particle physics. Atomic energy. Radioactivityheavy ion phenomenology010306 general physicsParton showerNuclear ExperimentParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsLarge Hadron Collider010308 nuclear & particles physicshep-phHeavy Ion PhenomenologyGluonHigh Energy Physics - Phenomenologylcsh:QC770-798High Energy Physics::Experiment
researchProduct

Issues and Opportunities in Exotic Hadrons

2016

The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. It is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimental and theoretical issues concerning h…

Nuclear and High Energy PhysicsParticle physicsField (physics)Lattice field theoryhep-latFOS: Physical sciencesAtomic01 natural sciencesComputer Science::Digital Libraries530Particle and Plasma PhysicsHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNuclearddc:530010306 general physicsNuclear ExperimentInstrumentationPhysics010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)Molecularhep-phAstronomy and AstrophysicsExotic hadronNuclear & Particles PhysicsHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasmaHigh Energy Physics::Experiment
researchProduct