Search results for "glutamine"

showing 10 items of 122 documents

Dynamic Precision Phenotyping Reveals Mechanism of Crop Tolerance to Root Herbivory.

2016

The western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte) is a major pest of maize (Zea mays) that is well adapted to most crop management strategies. Breeding for tolerance is a promising alternative to combat WCR but is currently constrained by a lack of physiological understanding and phenotyping tools. We developed dynamic precision phenotyping approaches using 11C with positron emission tomography, root autoradiography, and radiometabolite flux analysis to understand maize tolerance to WCR. Our results reveal that WCR attack induces specific patterns of lateral root growth that are associated with a shift in auxin biosynthesis from indole-3-pyruvic acid to indole-3-aceton…

0106 biological sciences0301 basic medicineCrops AgriculturalIndolesPhysiologyGlutamineResearch Articles - Focus IssuePlant Science580 Plants (Botany)01 natural sciencesPlant RootsZea maysHost-Parasite InteractionsCrop03 medical and health sciencesBotanyGeneticsAnimalsCarbon RadioisotopesHerbivoryAmino AcidsPlant DiseasesHerbivorebiologyIndoleacetic AcidsMechanism (biology)Lateral rootfungifood and beveragesBiological Transportbiology.organism_classificationZea maysColeoptera030104 developmental biologyWestern corn rootwormPhenotypeAgronomyPositron-Emission TomographyPEST analysisFlux (metabolism)010606 plant biology & botanyPlant physiology
researchProduct

The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism

2021

Abstract Because it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant development is not fully understood. In this study, we examine the relative contributions of photorespiration and PPSB to providing serine for growth and metabolism in the C3 model plant Arabidopsis thaliana. Our analyses of cell proliferation and elongation reveal that PPSB-derived serine is indispensable for plant growth and its loss cannot b…

0106 biological sciences0301 basic medicineNitrogenPhysiologyNitrogen assimilationCell RespirationArabidopsisPlant DevelopmentPlant Science01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundPlant Growth RegulatorsBiosynthesisGlutamine synthetaseSerineGeneticsPhosphorylationResearch ArticlesCell Proliferationchemistry.chemical_classificationbiologyChemistryMetabolismBiosynthetic PathwaysAmino acid030104 developmental biologyBiochemistrybiology.proteinPhotorespirationGlutamine oxoglutarate aminotransferase010606 plant biology & botanyPlant Physiology
researchProduct

Evaluation of an amino acid residue critical for the specificity and activity of human Gb3/CD77 synthase

2016

Human Gb3/CD77 synthase (α1,4-galactosyltransferase) is the only known glycosyltransferase that changes acceptor specificity because of a point mutation. The enzyme, encoded by A4GALT locus, is responsible for biosynthesis of Gal(α1–4)Gal moiety in Gb3 (CD77, Pk antigen) and P1 glycosphingolipids. We showed before that a single nucleotide substitution c.631C > G in the open reading frame of A4GALT, resulting in replacement of glutamine with glutamic acid at position 211 (substitution p. Q211E), broadens the enzyme acceptor specificity, so it can not only attach galactose to another galactose but also to N-acetylgalactosamine. The latter reaction leads to synthesis of NOR antigens, which are…

0301 basic medicineAcetylgalactosamineMutation MissenseBiochemistryGlycosphingolipidsSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundGb3/CD77 synthaseBiosynthesisCell Line TumorGlycosyltransferaseAspartic acidHumansAsparagineSite-directed mutagenesisMolecular BiologySite-directed mutagenesisbiologyAntigens NuclearGlutamic acidCell BiologyGalactosyltransferasesMolecular biologyEnzyme assayGlutamineP1PK blood group system030104 developmental biologyAmino Acid SubstitutionBiochemistrychemistryGlycopshingolipidsbiology.proteinNOR polyagglutinationOriginal ArticleGlycoconjugate Journal
researchProduct

How Glutamate Is Managed by the Blood-Brain Barrier.

2016

A facilitative transport system exists on the blood–brain barrier (BBB) that has been tacitly assumed to be a path for glutamate entry to the brain. However, glutamate is a non-essential amino acid whose brain content is much greater than plasma, and studies in vivo show that glutamate does not enter the brain in appreciable quantities except in those small regions with fenestrated capillaries (circumventricular organs). The situation became understandable when luminal (blood facing) and abluminal (brain facing) membranes were isolated and studied separately. Facilitative transport of glutamate and glutamine exists only on the luminal membranes, whereas Na+-dependent transport systems for g…

0301 basic medicineBBB (blood–brain barrier)brainglutamateReviewBiologyBlood–brain barrierGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicineExtracellular fluidmedicinelcsh:QH301-705.5Circumventricular organsoxoprolinechemistry.chemical_classificationGeneral Immunology and Microbiologyamino acid transportGlutamate receptorAmino acidGlutamine030104 developmental biologymedicine.anatomical_structureMembranelcsh:Biology (General)BiochemistrychemistryBiophysicsglutamineGeneral Agricultural and Biological SciencesCotransporter030217 neurology & neurosurgeryBiology
researchProduct

Editorial: Cell Stress, Metabolic Reprogramming, and Cancer

2018

0301 basic medicineCancer Researchantioxidant responseAntioxidant response; Ataxia-telangiectasia mutated; Cancer; Epithelial-to-mesenchymal transition; Glutamine; Hypoxia-inducible factor 1 alpha; L-lactate; Mitochondria; Oncology; Cancer ResearchMetabolic reprogrammingMitochondrionBiologylcsh:RC254-28203 medical and health sciencesHypoxia-Inducible Factor 1-AlphamedicinecancerGlycolysisEpithelial–mesenchymal transitionataxia-telangiectasia mutatedCancerL-lactatemedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensGlutaminemitochondriaCell stress030104 developmental biologyEditorialOncologyCancer researchglutaminehypoxia-inducible factor 1 alphaepithelial-to-mesenchymal transition
researchProduct

Oligodendrocytes Support Neuronal Glutamatergic Transmission via Expression of Glutamine Synthetase.

2019

Summary: Glutamate has been implicated in a wide range of brain pathologies and is thought to be metabolized via the astrocyte-specific enzyme glutamine synthetase (GS). We show here that oligodendrocytes, the myelinating glia of the central nervous system, also express high levels of GS in caudal regions like the midbrain and the spinal cord. Selective removal of oligodendrocyte GS in mice led to reduced brain glutamate and glutamine levels and impaired glutamatergic synaptic transmission without disrupting myelination. Furthermore, animals lacking oligodendrocyte GS displayed deficits in cocaine-induced locomotor sensitization, a behavior that is dependent on glutamatergic signaling in th…

0301 basic medicineGlutamineCentral nervous systemNeurotransmissionBiologyGeneral Biochemistry Genetics and Molecular BiologyArticleMidbrain03 medical and health sciencesGlutamatergic0302 clinical medicineGlutamate-Ammonia LigaseGlutamine synthetasemedicineAnimalslcsh:QH301-705.5Glutamate receptorBrainOligodendrocyteCell biologyGlutamineOligodendroglia030104 developmental biologymedicine.anatomical_structurenervous systemlcsh:Biology (General)030217 neurology & neurosurgerySignal TransductionCell reports
researchProduct

β1-Integrin– and K(V)1.3 channel–dependent signaling stimulates glutamate release from Th17 cells

2020

Although the impact of Th17 cells on autoimmunity is undisputable, their pathogenic effector mechanism is still enigmatic. We discovered soluble N-ethylmaleimide–sensitive factor attachment receptor (SNARE) complex proteins in Th17 cells that enable a vesicular glutamate release pathway that induces local intracytoplasmic calcium release and subsequent damage in neurons. This pathway is glutamine dependent and triggered by binding of β1-integrin to vascular cell adhesion molecule 1 (VCAM-1) on neurons in the inflammatory context. Glutamate secretion could be blocked by inhibiting either glutaminase or K(V)1.3 channels, which are known to be linked to integrin expression and highly expressed…

0301 basic medicineMultiple SclerosisGlutamic AcidVascular Cell Adhesion Molecule-1Cell Communication03 medical and health sciencesMice0302 clinical medicineAnimalsHumansChannel blockerReceptorNeuroinflammationMice KnockoutKv1.3 Potassium ChannelGlutamate secretionChemistryGlutaminaseCell adhesion moleculeIntegrin beta1Glutamate receptorGeneral MedicineCell biologyGlutamine030104 developmental biology030220 oncology & carcinogenesisTh17 CellsSNARE ProteinsResearch ArticleSignal Transduction
researchProduct

Chronic hyperammonemia alters extracellular glutamate, glutamine and GABA and membrane expression of their transporters in rat cerebellum. Modulation…

2018

Trafficking of glutamate, glutamine and GABA between astrocytes and neurons is essential to maintain proper neurotransmission. Chronic hyperammonemia alters neurotransmission and cognitive function. The aims of this work were to analyze in cerebellum of rats the effects of chronic hyperammonemia on: a) extracellular glutamate, glutamine and GABA concentrations; b) membrane expression of glutamate, glutamine and GABA transporters; c) how they are modulated by extracellular cGMP. Hyperammonemic rats show increased levels of extracellular glutamate, glutamine, GABA and citrulline in cerebellum in vivo. Hyperammonemic rats show: a) increased membrane expression of the astrocytic glutamine trans…

0301 basic medicineNeurotransmitter transporterMaleGlutamineGlutamate-glutamine cycleGlutamic AcidNeurotransmissionSynaptic Transmission03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineCerebellumNeurotransmitter Transport ProteinsmedicineExtracellularGABA transporterAnimalsHyperammonemiaRats WistarCyclic GMPgamma-Aminobutyric AcidPharmacologybiologyChemistryCell MembraneGlutamate receptorHyperammonemiamedicine.diseaseCell biologyRatsGlutamine030104 developmental biologynervous systembiology.proteinCitrullineExtracellular Space030217 neurology & neurosurgeryNeuropharmacology
researchProduct

Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery

2020

Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expr…

0301 basic medicineSCA1 Spinocerebellar ataxia type-1Intranuclear Inclusion BodiesClinical BiochemistryMSC mesenchymal stem cellProtein aggregationBiochemistry0302 clinical medicineMutant proteinProtein biosynthesisDE differentially expressed genesNuclear proteinlcsh:QH301-705.5FTIR Fourier-transform infrared spectroscopyAtaxin-1lcsh:R5-920biologyChemistryNuclear ProteinspolyQ polyglutamineRibosomeCell biologySB Sleeping BeautyRibosome ; Polyglutamine ; Ataxin-1 ; Oxidative stress ; Transposon ; Sleeping beauty transposon ; Protein networkSpinocerebellar ataxiaProtein foldingCellular modelFunction and Dysfunction of the Nervous Systemlcsh:Medicine (General)Research PaperiPSC induced pluripotent stem cellAtaxin 1Nerve Tissue ProteinsPPI protein-protein interaction03 medical and health sciencesROS reactive oxygen speciesProtein networkSleeping beauty transposonGSEA Gene Set Enrichment AnalysismedicineHumansNPC neural progenitor cellOrganic Chemistrymedicine.diseaseAFM atomic force microscopyOxidative Stress030104 developmental biologylcsh:Biology (General)IIBs intranuclear inclusion bodiesMS mass spectrometryCardiovascular and Metabolic Diseasesbiology.proteinPolyglutamine030217 neurology & neurosurgery
researchProduct

Herbicide glufosinate inhibits yeast growth and extends longevity during wine fermentation.

2017

Glufosinate ammonium (GA) is a widely used herbicide that inhibits glutamine synthetase. This inhibition leads to internal amino acid starvation which, in turn, causes the activation of different nutrient sensing pathways. GA also inhibits the enzyme of the yeast Saccharomyces cerevisiae in such a way that, although it is not used as a fungicide, it may alter yeast performance in industrial processes like winemaking. We describe herein how GA indeed inhibits the yeast growth of a wine strain during the fermentation of grape juice. In turn, GA extends longevity in a variety of growth media. The biochemical analysis indicates that GA partially inhibits the nutrient sensing TORC1 pathway, whic…

0301 basic medicineSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaelcsh:MedicineWineSaccharomyces cerevisiaeProtein Serine-Threonine KinasesArticle03 medical and health scienceschemistry.chemical_compoundGlutamine synthetaselcsh:ScienceAmino acid synthesisWinemakingchemistry.chemical_classificationFermentation in winemakingMultidisciplinarybiologyHerbicidesAminobutyrateslcsh:Rbiology.organism_classificationYeast030104 developmental biologychemistryBiochemistryGlufosinateFermentationlcsh:QFermentationTranscription FactorsScientific reports
researchProduct