Search results for "graphe"
showing 10 items of 563 documents
Bottom-up realization and electrical characterization of a graphene-based device.
2016
We propose a bottom-up procedure to fabricate an easy-to-engineer graphene-based device, consisting of a microstrip-like circuit where few-layer graphene nanoplatelets are used to contact two copper electrodes. The graphene nanoplatelets are obtained by the microwave irradiation of intercalated graphite, i.e., an environmentally friendly, fast and low-cost procedure. The contact is created by a bottom-up process, driven by the application of a DC electrical field in the gap between the electrodes, yielding the formation of a graphene carpet. The electrical resistance of the device has been measured as a function of the gap length and device temperature. The possible use of this device as a …
Rapid One-Step Fabrication of Graphene Oxide-Decorated Polycaprolactone Three-Dimensional Templates for Water Treatment
2020
Coating of flexible substrates is crucial to prepare versatile, multifunctional materials. However, exploration of effective fabrication approaches is still a challenging issue, because the pathways generally proposed require time-consuming, multistep protocols. Here, we developed a one-pot process for decorating either pearl necklace-like or fibrous fluffy-like structures of polycaprolactone (PCL) with graphene oxide (GO) skin. PCL solutions were dry jet-wet electrosprayed or electrospun into a stirred liquid collector constituted by ethanol-containing GO nanoparticles. The stirred liquid collector enables the formation of 3D-structures, whose microarchitecture can be designed by controlli…
Polycyclic aromatic chains on metals and insulating layers by repetitive [3+2] cycloadditions
2020
The vast potential of organic materials for electronic, optoelectronic and spintronic devices entails substantial interest in the fabrication of π-conjugated systems with tailored functionality directly at insulating interfaces. On-surface fabrication of such materials on non-metal surfaces remains to be demonstrated with high yield and selectivity. Here we present the synthesis of polyaromatic chains on metallic substrates, insulating layers, and in the solid state. Scanning probe microscopy shows the formation of azaullazine repeating units on Au(111), Ag(111), and h-BN/Cu(111), stemming from intermolecular homo-coupling via cycloaddition reactions of CN-substituted polycyclic aromatic az…
Formulation and validation of a reduced order model of 2D materials exhibiting a two-phase microstructure as applied to graphene oxide
2018
Abstract Novel 2D materials, e.g., graphene oxide (GO), are attractive building blocks in the design of advanced materials due to their reactive chemistry, which can enhance interfacial interactions while providing good in-plane mechanical properties. Recent studies have hypothesized that the randomly distributed two-phase microstructure of GO, which arises due to its oxidized chemistry, leads to differences in nano- vs meso‑scale mechanical responses. However, this effect has not been carefully studied using molecular dynamics due to computational limitations. Herein, a continuum mechanics model, formulated based on density functional based tight binding (DFTB) constitutive results for GO …
Carbon-Based Nanomaterials in Analytical Chemistry
2019
Modified nanocarbons as catalysts in organic processes
2019
The application of nanocarbons as useful scaffolds for the production of a wide range of catalytic systems is an ever-growing field as witnessed by the huge amount of research on this topic. Both covalent and non-covalent modifications of nanocarbons represent the main routes to gain access to hybrid nanostructured catalysts. In this chapter the attention will be focused on nanocarbons, namely, fullerene, nanotubes, and graphene, employed for catalytic purposes covering both organocatalytic and metal-based (metal nanoparticles, organometallic complexes) reactions, whereas simple physical mixtures of nanocarbons and metal nanoparticles as well as examples dealing with electrocatalysis or pho…
Graphene, Fullerenes, Carbon Nanotubes: Electronic Subsystem
2017
This chapter introduces the reader to the analysis of the structural and electronic system properties of various carbon allotropes (CNT, graphene) and several molecular derivatives. The genesis of the electronic system formation is investigated in detail. Non-regular defected nanocarbon systems are considered for possible applications in different fields, including energy storage; chemical, biochemical and electrochemical sensing; water purification; and catalysis.
Quantum-Chemical Insights into the Self-Assembly of Carbon-Based Supramolecular Complexes
2018
Understanding how molecular systems self-assemble to form well-organized superstructures governed by noncovalent interactions is essential in the field of supramolecular chemistry. In the nanoscience context, the self-assembly of different carbon-based nanoforms (fullerenes, carbon nanotubes and graphene) with, in general, electron-donor molecular systems, has received increasing attention as a means of generating potential candidates for technological applications. In these carbon-based systems, a deep characterization of the supramolecular organization is crucial to establish an intimate relation between supramolecular structure and functionality. Detailed structural information on the se…
Modelling of a recirculating photocatalytic microreactor implementing mesoporous N-TiO2 modified with graphene
2020
Abstract The use of microreactors in (photo)catalytic processes offers new possibilities for studying and optimizing many mass and photon transfer limited reactions. In this study, we propose a scalable computational fluid dynamics (CFD) model for the prediction of photocatalytic degradation of a model pollutant (4-nitrophenol) using immobilized N-doped TiO2 grown over reduced graphene oxide (N-TiO2/rGO) in a photocatalytic microreactor working in continuous flow-recirculation mode. The mode of operation used in this study allows the reduction of mass transfer limitations inherent to heterogeneous photocatalytic reactions taking place on immobilized catalysts. A CFD model was developed for …
Morphology, Rheological and Mechanical Properties of Isotropic and Anisotropic PP/rPET/GnP Nanocomposite Samples
2021
The effect of graphene nanoplatelets (GnPs) on the morphology, rheological, and mechanical properties of isotropic and anisotropic polypropylene (PP)/recycled polyethylene terephthalate (rPET)-based nanocomposite are reported. All the samples were prepared by melt mixing. PP/rPET and PP/rPET/GnP isotropic sheets were prepared by compression molding, whereas the anisotropic fibers were spun using a drawing module of a capillary viscometer. The results obtained showed that the viscosity of the blend is reduced by the presence of GnP due to the lubricating effect of the graphene platelets. However, the Cox–Merz rule is not respected. Compared to the PP/rPET blend, the GnP led to a slight incre…