Search results for "graphite"
showing 10 items of 229 documents
Controllable coverage of chemically modified graphene sheets with gold nanoparticles by thermal treatment of graphite oxide with N,N-dimethylformamide
2013
Abstract We describe a simple chemical method to reduce and functionalize graphite oxide by reaction with dimethylformamide under controlled heating. Our experiments suggest that the reaction conditions assist the decomposition of the solvent to produce dimethylamine molecules that can react with the oxygen-rich functional groups covering the surface of the exfoliated layers of graphene, therefore generating chemically modified graphene (CMG). These N-functionalities have been next used as anchoring points for the grafting of Au nanoparticles. Given that the functionalization extent can be controlled with the temperature and reaction time, our approach can be considered as a straightforward…
Innenrücktitelbild: Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy (Angew. Chem. 33/2020)
2020
Functionalized Calix[8]arenes, Synthesis and Self-assembly on Graphite
2005
With the intention of building hollow tubular structures by self-assembly, we have designed and successfully synthesized a series of calix[8]arene derivatives. Their phenolic units were functionalized in p-position by various groups which are able to interact via hydrogen bonding or π−π stacking. Ethynyl, amide, urea, or imide links were chosen for the covalent attachment of these functional groups, to ensure the adjustment of an optimal distance for their interaction. Two different kinds of nanostructures self-assembled on a highly oriented pyrolytic graphite (HOPG) surface were found by scanning force microscopy: parallel aligned nanorods in which the calixarene molecules are adsorbed ed…
The commensurate-incommensurate transition of hydrogen monolayers physisorbed on graphite
1987
We present a neutron diffraction study of the commensurate-incommensurate (C-IC) transition of hydrogen monolayers physisorbed on the basal planes of exfoliated graphite. It is shown that the solid intermediate phase detected by specific-heat measurements can be described in terms of a striped domain-wall phase with superheavy walls. Comparison with simple models with fixed domain sizes is made. The results are in agreement with recent LEED experiments of Cui and Fain and provide an experimental realization of C-IC transition theories.
Spatially resolved nanostructural transformation in graphite under femtosecond laser irradiation
2015
Abstract A polycrystalline graphite target was irradiated using infrared (800 nm) femtosecond (120 fs) laser pulses of different energies. Increase of sp 3 bonds percentage and possible diamond crystal formation were investigated ‘in-depth’ and on the irradiated surfaces. Synchrotron X-ray diffraction pattern have shown the presence of a diamond peak in one of the irradiated zones while X-ray photoelectron spectroscopy investigations have shown an increasing tendency of the sp 3 percent in the low power irradiated areas and similarly ‘in the depth’ of the higher power irradiated zones. Multiple wavelength Micro-Raman investigations have confirmed this trend along with an ‘in-depth’ (but not…
Tunability by alkali metal cations of photoinduced charge separation in azacrown functionalized graphene.
2013
A modified graphene oxide containing aza-9-crown-3 ether units covalently anchored has been prepared; aqueous suspensions of this material in the presence of Li(+), Na(+) and K(+) cations exhibit enhanced electrochemical response, enhanced photoinduced charge separation and longer lifetimes, facts that can be attributed to stabilization of electrons on graphene oxide by the nearby alkali metal cation-azacrown complexes.
An on-line mass separator for fission-produced alkali isotopes
1980
Abstract The design of an on-line mass separator installed at the TRIGA reactor in Mainz is described and its performance discussed. A tungsten oven, filled with about 2 g of 235U embedded in graphite, is exposed to a flux of 1.7 × 1011 thermal neutrons (s− cm−2) near the reactor core. After diffusion out of the graphite the fission-produced alkali isotopes are surface-ionized and electromagnetically mass-separated, the resolving power being about 750. Losses during the diffusion out of the target material are discussed. Due to these losses the maximum separator efficiency is about 5%, corresponding to a source strength of about 109 particles s−1 for the most abundant isotopes. The heaviest…
Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures
2013
With the use of high-resolution transmission electron microscopy, selected area electron diffraction and x-ray photoelectron spectroscopy methods of analysis we show that the laser ablation of a Si target in chloroform (CHCl3) by nanosecond UV pulses (40 ns, 355 nm) results in the formation of about 50–80 nm core–shell nanoparticles with a polycrystalline core composed of small (5–10 nm) Si and SiC mono-crystallites, the core being coated by several layers of carbon with the structure of graphite (the shell). In addition, free carbon multilayer nanostructures (carbon nano-onions) are also found in the suspension. On the basis of a comparison with similar laser ablation experiments implement…
Artificial granularity in two-dimensional arrays of nanodots fabricated by focused-electron-beam-induced deposition.
2010
We have prepared 2D arrays of nanodots embedded in an insulating matrix by means of focused-electron-beam-induced deposition using the W(CO)(6) precursor. By varying the deposition parameters, i.e. the electron beam current and energy and the raster constant, we obtain an artificial granular material with tunable electrical properties. The analysis of the temperature dependence of the conductivity and of the current-voltage characteristic suggests that the transport mechanism is governed by electron tunneling between artificial grains. In order to understand the nature of the granularity and thus the microstructural origin of the electronic transport behavior, we perform TEM and micro-Raman…
Electrochemical characterization of natural gold samples using the voltammetry of immobilized particles
2017
The application of the voltammetry of immobilized particles for characterizing natural gold samples from different geological settings and dating vein deposits is described. This is based on recording characteristic electrochemical oxidation signatures of gold and silver following the attachment of metal sub-microsamples to graphite electrodes. Keywords: Electrochemistry, Gold, Mineralogy, Placer deposits, Vein deposits, Nuggets