Search results for "hadronization"

showing 10 items of 56 documents

K− over K+ multiplicity ratio for kaons produced in DIS with a large fraction of the virtual-photon energy

2018

The K$^{-}$ over K$^{+}$ multiplicity ratio is measured in deep-inelastic scattering, for the first time for kaons carrying a large fraction $z$ of the virtual-photon energy. The data were obtained by the COMPASS collaboration using a 160 GeV muon beam and an isoscalar $^6$LiD target. The regime of deep-inelastic scattering is ensured by requiring $Q^2>1$ (GeV/$c)^2$ for the photon virtuality and $W>5$ GeV/$c^2$ for the invariant mass of the produced hadronic system. Kaons are identified in the momentum range from 12 GeV/$c$ to 40 GeV/$c$, thereby restricting the range in Bjorken-$x$ to $0.010.75$. For very large values of $z$, $i.e.$ $z>0.8$, we observe the kaon multiplicity ratio to fall …

Hadron0 [higher-order]target: isoscalar01 natural sciencesCOMPASSdeep inelastic scattering [muon+ nucleon]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)K: multiplicityHigh Energy Physics - Phenomenology (hep-ph)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]isoscalar [target]Invariant massNuclear ExperimentBosonPhysicsQuantum chromodynamicsquark: fragmentation functionhigher-order: 0photonperturbation theory: higher-orderhep-phмюоныlcsh:QC1-999Bjorken [scaling]High Energy Physics - Phenomenologybeam [muon]рассеяниеfactorization [cross section]multiplicity [pi]Particle Physics - Experimentperturbation theory [quantum chromodynamics]Particle physicsNuclear and High Energy PhysicsMesonFOS: Physical sciencesratio [multiplicity]530fragmentation function [quark]x-dependencescaling: Bjorkencharged particle: multiplicityphase spacemultiplicity [charged particle][ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]виртуальные фотоны0103 physical sciencesddc:530universalityquantum chromodynamics: perturbation theory010306 general physicsParticle Physics - Phenomenologymuon+ nucleon: deep inelastic scatteringMuonmultiplicity: ratiopi: multiplicity010308 nuclear & particles physicshep-exmuon: beamMultiplicity (mathematics)cross section: factorizationCERN SPSDeep inelastic scatteringhigher-order [perturbation theory][PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]каоны[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentmultiplicity [K]hadronizationlcsh:Physicsexperimental resultsPhysics Letters B
researchProduct

The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

2014

A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two…

PhysicsNuclear and High Energy PhysicsPhysics::Instrumentation and Detectorsbusiness.industryScatteringCherenkov detectorDetectorHadronHadronizationlaw.inventionNuclear physicsOpticsSilicon photomultiplierlawHadron spectroscopyHigh Energy Physics::ExperimentNuclear ExperimentbusinessInstrumentationCherenkov radiation
researchProduct

Global analysis of fragmentation functions for eta mesons

2011

Fragmentation functions for eta mesons are extracted at next-to-leading order accuracy of QCD in a global analysis of data taken in electron-positron annihilation and proton-proton scattering experiments. The obtained parametrization is in good agreement with all data sets analyzed and can be utilized, for instance, in future studies of double-spin asymmetries for single-inclusive eta production. The Lagrange multiplier technique is used to estimate the uncertainties of the fragmentation functions and to assess the role of the different data sets in constraining them.

Nuclear and High Energy PhysicsParticle physicsMesonCiencias FísicasElectron–positron annihilationHadronFOS: Physical sciencesElementary particle//purl.org/becyt/ford/1 [https]symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Fragmentation FunctionsNuclear ExperimentQuantum chromodynamicsPhysicsAnnihilation//purl.org/becyt/ford/1.3 [https]QcdEtaAstronomíaHigh Energy Physics - PhenomenologyLagrange multiplierData analysissymbolsHigh Energy Physics::ExperimentCIENCIAS NATURALES Y EXACTASHadronization
researchProduct

Investigation of the splitting of quark and gluon jets

1998

The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays L with the {\sc Delphi} detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation $C_A/C_F$. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resol…

QuarkParticle physicsPhysics and Astronomy (miscellaneous)Electron–positron annihilationAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::LatticeNuclear Theory7. Clean energy01 natural sciencesPartícules (Física nuclear)Nuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsHADRONIZATIONEngineering (miscellaneous)ScalingQuantum chromodynamicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyObservableQCDPhoton structure functionHadronizationGluonMODELAVERAGE MULTIPLICITIES; QCD; HADRONIZATION; FRAGMENTATION; MODELFísica nuclearHigh Energy Physics::ExperimentFRAGMENTATIONAVERAGE MULTIPLICITIESParticle Physics - Experiment
researchProduct

Suppression of Λ(1520) resonance production in central Pb-Pb collisions at sNN=2.76 TeV

2019

The production yield of the Λ(1520) baryon resonance is measured at midrapidity in Pb-Pb collisions at sNN = 2.76 TeV with the ALICE detector at the Large Hadron Collider (LHC). The measurement is performed in the Λ(1520)→pK− (and charge conjugate) hadronic decay channel as a function of the transverse momentum (pT) and collision centrality. The ratio of the pT-integrated production of Λ(1520) baryons relative to Λ baryons in central collisions is suppressed by about a factor of 2 with respect to peripheral collisions. This is the first observation of the suppression of a baryonic resonance at the LHC and the first 3σ evidence of Λ(1520) suppression within a single collision system. The mea…

PhysicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHadronResonance01 natural sciencesHadronizationBaryonNuclear physics0103 physical sciencesQuark–gluon plasmaImpact parameterNuclear Experiment010306 general physicsEvent generatorPhysical Review C
researchProduct

B0andBs0decays intoJ/ψf0(980)andJ/ψf0(500)and the nature of the scalar resonances

2014

Abstract We describe the B 0 and B s 0 decays into J / ψ f 0 ( 500 ) and J / ψ f 0 ( 980 ) by taking into account the dominant process for the weak decay of B 0 and B s 0 into J / ψ and a q q ¯ component. After hadronization of this q q ¯ component into pairs of pseudoscalar mesons we obtain certain weights for the meson–meson components and allow them to interact among themselves. The final state interaction of the meson–meson components, described in terms of chiral unitary theory, gives rise to the f 0 ( 980 ) and f 0 ( 500 ) resonances and we can obtain the π + π − invariant mass distributions after the decay of the resonances, which allows us to compare directly to the experiments. We …

PhysicsNuclear and High Energy PhysicsParticle physicsUnitarityMeson010308 nuclear & particles physicsScalar (mathematics)01 natural sciencesPseudoscalar mesonHadronizationPseudoscalar0103 physical sciencesMass spectrumHigh Energy Physics::ExperimentInvariant mass010306 general physicsPhysics Letters B
researchProduct

Energy deposition in hard dihadron triggered events in heavy-ion collisions

2008

The experimental observation of hadrons correlated back-to-back with a (semi-)hard trigger in heavy ion collisions has revealed a splitting of the away side correlation structure in a low to intermediate transverse momentum (P_T) regime. This is consistent with the assumption that energy deposited by the away side parton into the bulk medium produced in the collision excites a sonic shockwave (a Mach cone) which leads to away side correlation strength at large angles. A prediction following from assuming such a hydrodynamical origin of the correlation structure is that there is a sizeable elongation of the shockwave in rapidity due to the longitudinal expansion of the bulk medium. Using a s…

PhysicsShock waveNuclear and High Energy Physics010308 nuclear & particles physicsHadronFOS: Physical sciencesPartonCollision01 natural sciencesHadronizationNuclear physicssymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Mach number0103 physical sciencesMach's principlesymbolsRapidity010306 general physicsNuclear Experiment
researchProduct

Measuring the top energy asymmetry at the LHC: QCD and SMEFT interpretations

2020

The energy asymmetry in top-antitop-jet production is an observable of the top charge asymmetry designed for the LHC. We perform a realistic analysis in the boosted kinematic regime, including effects of the parton shower, hadronization and expected experimental uncertainties. Our predictions at particle level show that the energy asymmetry in the Standard Model can be measured with a significance of $3\sigma$ during Run 3, and with more than $5\sigma$ significance at the HL-LHC. Beyond the Standard Model the energy asymmetry is a sensitive probe of new physics with couplings to top quarks. In the framework of the Standard Model Effective Field Theory, we show that the sensitivity of the en…

Nuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard Modelmedia_common.quotation_subjectFOS: Physical sciences01 natural sciences7. Clean energyAsymmetryStandard ModelHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Hadron-Hadron scattering (experiments)0103 physical sciencesEffective field theorylcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsParton showermedia_commonParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsLarge Hadron Collider010308 nuclear & particles physicshep-exHigh Energy Physics::Phenomenologyhep-phQCDHadronizationHigh Energy Physics - PhenomenologyTop physicsBeyond Standard Modellcsh:QC770-798High Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Predictions for the ${\vec{\Lambda }_b \rightarrow J/\psi ~ \Lambda (1405)}$ Λ b → J / ψ Λ ( 1405 ) decay

2015

We calculate the shape of the [Formula: see text] and [Formula: see text] invariant mass distributions in the [Formula: see text] and [Formula: see text] decays that are dominated by the [Formula: see text] resonance. The weak interaction part is the same for both processes and the hadronization into the different meson-baryon channels in the final state is given by symmetry arguments. The most important feature is the implementation of the meson-baryon final-state interaction using two chiral unitary models from different theoretical groups. Both approaches give a good description of antikaon-nucleon scattering data, the complex energy shift in kaonic hydrogen and the line shapes of [Formu…

PhysicsParticle physicsPhysics and Astronomy (miscellaneous)MesonUnitarityKaonic hydrogenQuark modelHigh Energy Physics::PhenomenologyNuclear TheoryElementary particleWeak interaction7. Clean energyHadronizationTheoretical physicsInvariant massHigh Energy Physics::Experimentddc:530Nuclear ExperimentEngineering (miscellaneous)
researchProduct

Production of exotic tetraquarks QQq¯q¯ in heavy-ion collisions at the LHC

2019

We investigate the production of exotic tetraquarks, $QQ\overline{q}\overline{q}\ensuremath{\equiv}{T}_{QQ}$ ($Q=c$ or $b$ and $q=u$ or $d$), in relativistic heavy-ion collisions using the quark coalescence model. The ${T}_{QQ}$ yield is given by the overlap of the density matrix of the constituents in the emission source with the Wigner function of the produced tetraquark. The tetraquark wave function is obtained from exact solutions of the four-body problem using realistic constituent models. The production yields are typically one order of magnitude smaller than previous estimations based on simplified wave functions for the tetraquarks. We also evaluate the consequences of the partial r…

QuarkPhysicsDensity matrixParticle physicsLarge Hadron Collider010308 nuclear & particles physicsQuark model01 natural sciencesHadronization0103 physical sciencesWigner distribution functionTetraquark010306 general physicsWave functionPhysical Review D
researchProduct