Search results for "halogeenisidos"
showing 3 items of 3 documents
Inclusion complexes of Cethyl-2-methylresorcinarene and pyridine N-oxides: breaking the C–I⋯−O–N+ halogen bond by host–guest complexation
2016
C ethyl-2-Methylresorcinarene forms host–guest complexes with aromatic N-oxides through multiple intra- and intermolecular hydrogen bonds and C–H⋯π interactions. The host shows conformational flexibility to accommodate 3-methylpyridine N-oxide, while retaining a crown conformation for 2-methyl- and 4-methoxypyridine N-oxides highlighting the substituent effect of the guest. N-Methylmorpholine N-oxide, a 6-membered ring aliphatic N-oxide with a methyl at the N-oxide nitrogen, is bound by the equatorial −N–CH3 group located deep in the cavity. 2-Iodopyridine N-oxide is the only guest that manifests intermolecular N–O⋯I–C halogen bond interactions, which are broken down by the host resulting i…
Design and construction of halogen-bonded capsules and cages
2017
This thesis describes the design, synthesis and characterization of supramolecular halogen-bonded capsules and cages from multivalent ligands. In the first part of the thesis, an overview to halogen bonding is provided. After discussing the general features of the halogen bonding, the most frequently used halogen bond donors are introduced and examples of their utilization in halogen-bonded systems are discussed. The chapter also presents recent advances made in the field of halogen-bonded supramolecular capsules. The first part of the thesis also includes a review of halogen-bonded complexes involving halonium ions, and a brief introduction to [N···X+···N] halogen bonds is provided along w…
Substituent Effects on the [N−I−N]+ Halogen Bond
2016
We have investigated the influence of electron density on the three-center [N–I–N]+ halogen bond. A series of [bis(pyridine)iodine]+ and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine]+ BF4– complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by 15N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N–I–N]+ halogen bond re…