Search results for "heliothis-virescens"
showing 4 items of 4 documents
Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua
2010
Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari (TM), a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression …
Host-range expansion of Spodoptera exigua multiple nucleopolyhedrovirus to Agrotis segetum larvae when the midgut is bypassed.
2010
Given the high similarity in genome content and organization between Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and Agrotis segetum nucleopolyhedrovirus (AgseNPV), as well as the high percentages of similarity found between their 30 core genes, the specificity of these NPVs was analysed for the respective insect hosts, S. exigua and A. segetum. The LD(50) for AgseNPV in second-instar A. segetum larvae was 83 occlusion bodies per larva and the LT(50) was 8.1 days. AgseNPV was orally infectious for S. exigua, but the LD(50) was 10 000-fold higher than for SeMNPV. SeMNPV was not infectious for A. segetum larvae when administered orally, but an infection was established by injecti…
Reduced membrane-bound alkaline phosphatase does not affect binding of Vip3Aa in a Heliothis virescens resistant colony
2020
The Vip3Aa insecticidal protein from Bacillus thuringiensis (Bt) is produced by specific transgenic corn and cotton varieties for efficient control of target lepidopteran pests. The main threat to this technology is the evolution of resistance in targeted insect pests and understanding the mechanistic basis of resistance is crucial to deploy the most appropriate strategies for resistance management. In this work, we tested whether alteration of membrane receptors in the insect midgut might explain the >
Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae
2004
Several mutants of the Bacillus thuringiensis Cry1Ca toxin affected with regard to specific activity towards Spodoptera exigua were studied. Alanine was used to replace single residues in loops 2 and 3 of domain II (mutant pPB19) and to replace residues 541– 544 in domain III (mutant pPB20). Additionally, a Cry1Ca mutant combining all mutations was constructed (mutant pPB21). Toxicity assays showed a marked decrease in toxicity against S. exigua for all mutants, while they retained their activity against Manduca sexta, confirming the importance of these residues in determining insect specificity. Parameters for binding to the specific receptors in BBMV (brush border membrane vesicles) of S.…