Search results for "heliothis-virescens"

showing 4 items of 4 documents

Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua

2010

Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari (TM), a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression …

0106 biological sciencesDrug Resistancelcsh:MedicineGene ExpressionInsectaminopeptidase n01 natural sciencesAminopeptidasesHemolysin ProteinsEndotoxinmanduca-sextaBacillus thuringiensisInsect ProteinBiotechnology/Applied Microbiologylcsh:Scienceheliothis-virescensmedia_common0303 health sciencesLarvaMultidisciplinarybiologymediated insect resistanceGenetics and Genomics/Gene ExpressionEcology/Population Ecologybacterial-infectionNoctuidaeInsect ProteinsResearch Articlemedia_common.quotation_subjectAminopeptidaseMolecular Sequence DataBacillus thuringiensisBacterial ProteinSpodopteraSpodopterastem-cell proliferationMicrobiology03 medical and health sciencesMicrobiology/Applied MicrobiologyBacterial ProteinsExiguaBotanyBacillus thuringiensiAnimalscrystal proteinsBIOS Plant Development SystemsAmino Acid Sequencekinase pathways030304 developmental biologyposterior midgutHeliothis virescensBacillus thuringiensis ToxinsAnimaltrichoplusia-nilcsh:RfungiMidgutHemolysin Proteinbiology.organism_classificationEndotoxinsGastrointestinal Tract010602 entomologyPlant Biology/Agricultural Biotechnologylcsh:QSequence Alignment
researchProduct

Host-range expansion of Spodoptera exigua multiple nucleopolyhedrovirus to Agrotis segetum larvae when the midgut is bypassed.

2010

Given the high similarity in genome content and organization between Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and Agrotis segetum nucleopolyhedrovirus (AgseNPV), as well as the high percentages of similarity found between their 30 core genes, the specificity of these NPVs was analysed for the respective insect hosts, S. exigua and A. segetum. The LD(50) for AgseNPV in second-instar A. segetum larvae was 83 occlusion bodies per larva and the LT(50) was 8.1 days. AgseNPV was orally infectious for S. exigua, but the LD(50) was 10 000-fold higher than for SeMNPV. SeMNPV was not infectious for A. segetum larvae when administered orally, but an infection was established by injecti…

BaculoviridaeLaboratory of VirologyMothsSpodopterain-vivoheliothis-virescens larvaeLaboratorium voor VirologiebaculovirusBeet armywormVirologyExiguaparasitic diseasescalifornica-m-nucleopolyhedrovirusAnimalsPeritrophic matrixRNA MessengerLarvabiologyReverse Transcriptase Polymerase Chain ReactionfungiNuclear Polyhedrosis VirusMidgutocclusion-derived virusbiology.organism_classificationPE&RCVirologyNucleopolyhedrovirusesperitrophic matrixIntestinesAutographa californicacell-linesbeet armywormautographa-californicanuclear polyhedrosis-virusLarvaThe Journal of general virology
researchProduct

Reduced membrane-bound alkaline phosphatase does not affect binding of Vip3Aa in a Heliothis virescens resistant colony

2020

The Vip3Aa insecticidal protein from Bacillus thuringiensis (Bt) is produced by specific transgenic corn and cotton varieties for efficient control of target lepidopteran pests. The main threat to this technology is the evolution of resistance in targeted insect pests and understanding the mechanistic basis of resistance is crucial to deploy the most appropriate strategies for resistance management. In this work, we tested whether alteration of membrane receptors in the insect midgut might explain the &gt

HELIOTHIS-VIRESCENSInsecticidesHealth Toxicology and Mutagenesislcsh:MedicinePROTEIN0601 Biochemistry and Cell BiologyToxicologyBiotecnologiaInsecticide ResistanceBacillus thuringiensisSITES0303 health sciencesbiologyChemistryfood and beveragesPlants Genetically ModifiedLepidopteraBiochemistryFood Science & TechnologyInsect ProteinsAlkaline phosphatase1115 Pharmacology and Pharmaceutical Sciencestobacco budwormLife Sciences & BiomedicineSPODOPTERA-FRUGIPERDA MIDGUTProtein BindingEXPRESSIONBrush borderBacillus thuringiensisCRY1ACArticleVESICLES03 medical and health sciencesBACILLUS-THURINGIENSISBacterial ProteinsDownregulation and upregulationinsecticidal proteinsCell surface receptor<i>Bacillus thuringiensis</i>AnimalsCROPS030304 developmental biologyScience & TechnologyGenetically modified maizeHeliothis virescens030306 microbiologylcsh:RfungiMembrane ProteinsMidgutAlkaline Phosphatasebiology.organism_classificationTOXIN RESISTANCEinsect resistanceProteïnes
researchProduct

Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae

2004

Several mutants of the Bacillus thuringiensis Cry1Ca toxin affected with regard to specific activity towards Spodoptera exigua were studied. Alanine was used to replace single residues in loops 2 and 3 of domain II (mutant pPB19) and to replace residues 541– 544 in domain III (mutant pPB20). Additionally, a Cry1Ca mutant combining all mutations was constructed (mutant pPB21). Toxicity assays showed a marked decrease in toxicity against S. exigua for all mutants, while they retained their activity against Manduca sexta, confirming the importance of these residues in determining insect specificity. Parameters for binding to the specific receptors in BBMV (brush border membrane vesicles) of S.…

Models MolecularMutantLaboratory of Virologyaminopeptidase nmedicine.disease_causeBiochemistrybrush-border membraneToxin oligomerizationSubstrate SpecificityBacterial toxin; Manduca sexta; Mode of action; Protoxin activation; Toxin oligomerization; Toxin receptor bindingHemolysin Proteinsmanduca-sextaBacillus thuringiensisheliothis-virescensAlanine:CIENCIAS DE LA VIDA::Bioquímica [UNESCO]MicrovillibiologyPRI BioscienceBiochemistryMode of actionLarvaThermodynamicsResearch ArticleProtein BindingBacterial Toxinspink-bollwormBacillus thuringiensisSpodopteraSpodopteraBinding CompetitiveManduca sextaLaboratorium voor VirologieBacterial ProteinsExiguamedicineirreversible bindingAnimalscrystal proteinsProtoxin activationProtein Structure QuaternaryMode of actionMolecular BiologyBacillus thuringiensis ToxinsToxin receptor bindingToxininsecticidal toxinpore formationCytoplasmic VesiclesfungiUNESCO::CIENCIAS DE LA VIDA::BioquímicaBacterial toxinCell Biologybiology.organism_classificationProtein Structure TertiaryEndotoxinsManduca sextaMutationcryia delta-endotoxins
researchProduct