Search results for "herbicides"

showing 10 items of 181 documents

Effects of multiple stressors on the dimensionality of ecological stability

2021

Abstract Ecological stability is a multidimensional construct. Investigating multiple stability dimensions is key to understand how ecosystems respond to disturbance. Here, we evaluated the single and combined effects of common agricultural stressors (insecticide, herbicide and nutrients) on four dimensions of stability (resistance, resilience, recovery and invariability) and on the overall dimensionality of stability (DS) using the results of a freshwater mesocosm experiment. Functional recovery and resilience to pesticides were enhanced in nutrient‐enriched systems, whereas compositional recovery was generally not achieved. Pesticides did not affect compositional DS, whereas functional DS…

0106 biological sciencesLettermedia_common.quotation_subjectStability (learning theory)Fresh Waterfunctional ecology010603 evolutionary biology01 natural sciencesMesocosmrecoveryEcosystemLettersPesticidescommunity compositionresilienceEcosystemEcology Evolution Behavior and Systematicsmedia_commondisturbanceEcological stabilityFunctional ecologyResistance (ecology)HerbicidesEcology010604 marine biology & hydrobiologyQ Science (General)Agriculture15. Life on landpopulationsmultiple stressorsmesocosm experimentDisturbance (ecology)ecological stabilityEnvironmental sciencePsychological resiliencecommunity ecologyEcology Letters
researchProduct

Seasonal effects on mortality rates and resprouting of stems treated with glyphosate in the invasive tree of heaven (Ailanthus altissima (Mill.) Swin…

2015

Tree of heaven (Ailanthus altissima) is regarded as invasive within urban and natural areas worldwide. Efficient methods to control it are significantly needed if we are to limit its well-known environmental and economic impacts. Up to now the use of herbicides has proven necessary since following mechanical damage, Ailanthus vigorously resprouts. However, the seasonal response of Ailanthus stems, treated with herbicides, has never been assessed. We compared the control efficacy recorded in autumn, winter and summer in an abandoned suburban citrus grove in Sicily, under Mediterranean-climate conditions. Glyphosate was injected within drill holes made in knee-high cut trees. Tree mortality a…

0106 biological sciencesMediterranean climateSettore AGR/05 - Assestamento Forestale E Selvicoltura010603 evolutionary biology01 natural sciencesMediterranean BasinInvasive specieschemistry.chemical_compoundherbicideAilanthusmedicineAilanthus altissimabiologyMortality ratealien tree; control techniques; herbicides; stem injection; Mediterranean basinMediterranean basinstem injectionSeasonalitybiology.organism_classificationmedicine.diseasealien treecontrol techniqueSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeHorticulturechemistryGlyphosateAgronomy and Crop Science010606 plant biology & botany
researchProduct

Molecular Bases for Sensitivity to Tubulin-Binding Herbicides in Green Foxtail

2004

Abstract We investigated the molecular bases for resistance to several classes of herbicides that bind tubulins in green foxtail (Setaria viridis L. Beauv.). We identified two α- and two β-tubulin genes in green foxtail. Sequence comparison between resistant and sensitive plants revealed two mutations, a leucine-to-phenylalanine change at position 136 and a threonine-to-isoleucine change at position 239, in the gene encoding α2-tubulin. Association of mutation at position 239 with herbicide resistance was demonstrated using near-isogenic lines derived from interspecific pairings between green foxtail and foxtail millet (Setaria italica L. Beauv.), and herbicide sensitivity bioassays combine…

0106 biological sciencesModels MolecularSetariaPhysiologyProtein ConformationMolecular Sequence DataSetaria PlantDrug ResistancePlant Sciencemedicine.disease_cause01 natural sciencesTubulin binding[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesFocus Issue on the Plant CytoskeletonSpecies SpecificityTubulin[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsBotanyGeneticsmedicineBioassayAmino Acid SequenceGeneCross-resistancePhylogenyComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesMutationbiologyBase SequenceSetaria viridisHerbicidesbiology.organism_classificationBiochemistryFoxtail010606 plant biology & botanyProtein Binding
researchProduct

Kinetic studies on protoporphyrinogen oxidase inhibition by diphenyl ether herbicides

1991

Diphenyl ethers (DPEs) and related herbicides are powerful inhibitors of protoporphyrinogen oxidase, an enzyme involved in the biosynthesis of haems and chlorophylls. The inhibition kinetics of protoporphyrinogen oxidase of various origins by four DPEs, (methyl)-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid (acifluorfen and its methyl ester, acifluorfen-methyl), methyl-5-[2-chloro-4-(trifluoromethyl) phenoxy]-2-chlorobenzoate (LS 820340) and methyl-5-[2-chloro-5-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid (RH 5348), were studied. The inhibitions of the enzymes from maize (Zea mays) mitochondrial and etiochloroplastic membranes and mouse liver mitochondrial membranes were com…

0106 biological sciencesOxidoreductases Acting on CH-CH Group DonorsStereochemistry[SDV]Life Sciences [q-bio]Carboxylic acidMitochondria LiverEtherSaccharomyces cerevisiaeAcifluorfen01 natural sciencesBiochemistryMitochondrial ProteinsMiceStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundMALHERBOLOGIEPhenolsAnimalsProtoporphyrinogen OxidaseMolecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biologychemistry.chemical_classification0303 health sciencesTrifluoromethylFlavoproteinsHerbicidesDiphenyl etherIntracellular MembranesCell BiologyPlantsMitochondriaProtoporphyrinogen IX[SDV] Life Sciences [q-bio]KineticsEnzymechemistryProtoporphyrinogen oxidaseOxidoreductasesEthersResearch Article010606 plant biology & botanyBiochemical Journal
researchProduct

Characterization of (3H) acifluorfen binding to purified pea etioplasts, and evidence that protoporphyrinogen oxidase specifically binds acifluorfen

1992

It is now generally accepted that protoporphyrinogen oxidase is the target-enzyme for diphenylether-type herbicides. Recent studies [Camadro, J-M., Matringe, M., Scalla, R. & Labbe, P. (1991) Biochem. J. 277, 17–21] have revealed that in maize, diphenyl ethers competitively inhibit protoporphyrinogen oxidase with respect to its substrate, protoporphyrinogen IX. In this study, we show that, in purified pea etioplast, [3H]acifluorfen specifically binds to a single class of high-affinity binding sites with an apparent dissociation constant of 6.2 ± 1.3 nM and a maximum density of 29 ± 5 nmol/g protein. [3H]Acifluorfen binding reaches equilibrium in about 1 min at 30°C. Half dissociation occurs…

0106 biological sciencesOxidoreductases Acting on CH-CH Group DonorsStereochemistry[SDV]Life Sciences [q-bio]PhthalimidesAcifluorfen01 natural sciencesBiochemistrySubstrate Specificity03 medical and health scienceschemistry.chemical_compoundMALHERBOLOGIEEtioplastProtoporphyrinogen OxidaseBinding siteComputingMilieux_MISCELLANEOUS030304 developmental biologychemistry.chemical_classificationOrganelles0303 health sciencesOxidase testBinding SitesPlants MedicinalProtoporphyrin IXMolecular StructureBIOCHIMIEHerbicidesFabaceaeProtoporphyrinogen IX[SDV] Life Sciences [q-bio]KineticsEnzymechemistryBiochemistryNitrobenzoatesProtoporphyrinogen oxidaseOxidoreductases010606 plant biology & botany
researchProduct

Synthesis and properties of a photoaffinity labeling reagent for protoporphyrinogen oxidases, the target enzymes of diphenyl ether herbicides

1994

A diazoketone 3 has been synthesized in two steps from acifluorfen 1, a diphenyl ether herbicide. Like the parent compound 1, the diazoketone 3 is toxic to plant cells and inhibits protoporphyrinogen oxidase, the molecular target of diphenyl ether herbicides. On photolysis of 3 in methanol, the generated carbene mainly undergoes the Wolff rearrangement to a ketene which further adds methanol, but many other products are observed. A tritiated derivative of 3 has been prepared which is suitable for photoaffinity labeling experiments.

0106 biological sciencesOxidoreductases Acting on CH-CH Group Donors[SDV]Life Sciences [q-bio]Clinical BiochemistryPharmaceutical ScienceKeteneAcifluorfen01 natural sciencesBiochemistry03 medical and health scienceschemistry.chemical_compoundDrug DiscoveryOrganic chemistryProtoporphyrinogen OxidaseMolecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesPhotolysisPhotoaffinity labelingMolecular StructureBIOCHIMIEHerbicidesOrganic ChemistryDiphenyl etherWolff rearrangementAffinity Labels[SDV] Life Sciences [q-bio]chemistryTOXICOLOGIEReagentMolecular MedicineProtoporphyrinogen oxidaseIndicators and ReagentsMethanolSoybeansOxidoreductases010606 plant biology & botany
researchProduct

Prohexadione calcium is herbicidal to the sunflower root parasite Orobanche cumana

2020

BACKGROUND The obligatory sunflower root parasite Orobanche cumana Wallr. deprives its host of essential nutrients, resulting in a dramatic reduction in yield and biomass. A post-emergence application with an imidazolinone herbicide on an imidazolinone-tolerant sunflower is highly effective against O. cumana. The herbicide inhibits the enzyme acetohydroxy acid synthase and consequently, growth of the parasite is inhibited, although the sunflower survives the treatment through mutations in the target enzyme. Interestingly, field studies have shown that a combined application of an imidazolinone herbicide with prohexadione resulted in reduced emergence of O. cumana compared with the sole appl…

0106 biological sciencesParasitic plantchemistry.chemical_elementGerminationCalciumPlant Roots01 natural sciencesAnimalsParasite hostingParasitesAcetohydroxy Acid SynthasebiologyHerbicidesOrobancheHost (biology)General Medicinebiology.organism_classificationSunflower010602 entomologyOrobancheHorticulturechemistryGerminationInsect ScienceSeedsHelianthusCalciumAgronomy and Crop Science010606 plant biology & botanyPest Management Science
researchProduct

An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to ar…

2003

Abstract A 3,300-bp DNA fragment encoding the carboxyl-transferase domain of the multidomain, chloroplastic acetyl-coenzyme A carboxylase (ACCase) was sequenced in aryloxyphenoxypropionate (APP)-resistant and -sensitive Alopecurus myosuroides (Huds.). No resistant plant contained an Ile-1,781-Leu substitution, previously shown to confer resistance to APPs and cyclohexanediones (CHDs). Instead, an Ile-2,041-Asn substitution was found in resistant plants. Phylogenetic analysis of the sequences revealed that Asn-2,041 ACCase alleles derived from several distinct origins. Allele-specific polymerase chain reaction associated the presence of Asn-2,041 with seedling resistance to APPs but not to C…

0106 biological sciencesPhysiologyMolecular Sequence DataSequence alignmentPlant ScienceBiology01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants geneticschemistry.chemical_compoundMagnoliopsida[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsmental disordersGeneticsTransferaseVULPINAmino Acid SequenceIsoleucinePeptide sequencePhylogenyComputingMilieux_MISCELLANEOUS2. Zero hungerchemistry.chemical_classificationPolymorphism GeneticCyclohexanonesHerbicidesAcetyl-CoA carboxylase04 agricultural and veterinary sciencesACETYL-COA CARBOXYLASEPyruvate carboxylaseProtein Structure TertiaryEnzymeBiochemistrychemistryMutation040103 agronomy & agriculture0401 agriculture forestry and fisheriesIsoleucinePropionatesSequence AlignmentDNA010606 plant biology & botanyResearch Article
researchProduct

An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistan…

2002

The cDNAs encoding chloroplastic acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) from three lines of Setaria viridis (L. Beauv.) resistant or sensitive to sethoxydim, and from one sethoxydim-sensitive line of Setaria italica (L. Beauv.) were cloned and sequenced. Sequence comparison revealed that a single isoleucine-leucine substitution discriminated ACCases from sensitive and resistant lines. Using near-isogenic lines of S. italica derived from interspecific hybridisation, we demonstrated that the transfer of the S. viridis mutant ACCase allele into a sethoxydim-sensitive S. italica line conferred resistance to this herbicide. We confirmed this result using allele-specific polymerase chain rea…

0106 biological sciencesSetariaChloroplastsMutantMolecular Sequence DataDrug ResistancePlant ScienceMolecular cloningPoaceae01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants geneticsLeucine[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGeneticsPoint MutationAmino Acid SequenceIsoleucineComputingMilieux_MISCELLANEOUSAllelesPhylogenyGenes DominantbiologySequence Homology Amino AcidSetaria viridisCyclohexanonesHerbicidesAcetyl-CoA carboxylase04 agricultural and veterinary sciencesbiology.organism_classification3. Good healthPyruvate carboxylaseBiochemistryAmino Acid Substitution040103 agronomy & agriculture0401 agriculture forestry and fisheriesLeucineIsoleucineSequence Alignment010606 plant biology & botanyAcetyl-CoA CarboxylasePlanta
researchProduct

Sucrose amendment enhances phytoaccumulation of the herbicide atrazine in Arabidopsis thaliana.

2006

International audience; Growth in the presence of sucrose was shown to confer to Arabidopsis thaliana (thale cress or mustard weed) seedlings, under conditions of in vitro culture, a high level of tolerance to the herbicide atrazine and to other photosynthesis inhibitors. This tolerance was associated with root-to-shoot transfer and accumulation of atrazine in shoots, which resulted in significant decrease of herbicide levels in the growth medium. In soil microcosms, application of exogenous sucrose was found to confer tolerance and capacity to accumulate atrazine in Arabidopsis thaliana plants grown on atrazine-contaminated soil, and resulted in enhanced decontamination of the soil. Applic…

0106 biological sciencesSucroseHealth Toxicology and MutagenesisArabidopsisSoluble sugars010501 environmental sciencesBiologyToxicologyPhotosynthesis01 natural sciencesPlant Rootschemistry.chemical_compoundSoilArabidopsisBotanyArabidopsis thalianaSoil PollutantsAtrazinePhotosynthesis[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environmentEcosystem0105 earth and related environmental sciencesGrowth mediumHerbicides[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]fungifood and beveragesGeneral Medicinebiology.organism_classificationPollutionPhytoremediationPhytoremediationBiodegradation EnvironmentalchemistryShootAtrazineWeedPlant Shoots010606 plant biology & botany
researchProduct