Search results for "higher-order"
showing 10 items of 66 documents
K− over K+ multiplicity ratio for kaons produced in DIS with a large fraction of the virtual-photon energy
2018
The K$^{-}$ over K$^{+}$ multiplicity ratio is measured in deep-inelastic scattering, for the first time for kaons carrying a large fraction $z$ of the virtual-photon energy. The data were obtained by the COMPASS collaboration using a 160 GeV muon beam and an isoscalar $^6$LiD target. The regime of deep-inelastic scattering is ensured by requiring $Q^2>1$ (GeV/$c)^2$ for the photon virtuality and $W>5$ GeV/$c^2$ for the invariant mass of the produced hadronic system. Kaons are identified in the momentum range from 12 GeV/$c$ to 40 GeV/$c$, thereby restricting the range in Bjorken-$x$ to $0.010.75$. For very large values of $z$, $i.e.$ $z>0.8$, we observe the kaon multiplicity ratio to fall …
Inclusive B-meson production at small p_T in the general-mass variable-flavor-number scheme
2015
We calculate the cross section for the inclusive production of B mesons in pp and ppbar collisions at next-to-leading order in the general-mass variable-flavor-number scheme and show that a suitable choice of factorization scales leads to a smooth transition to the fixed-flavor-number scheme. Our numerical results are in good agreement with data from the Tevatron and LHC experiments at small and at large transverse momenta.
Forward dijets in proton-nucleus collisions at next-to-leading order: the real corrections
2021
Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the "real" next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in our previous paper. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO …
Higher-order modulation instability in fiber optics
2012
We report on analytical, numerical and experimental studies of higher-order modulation instability in fiber optics. This new form of instability arises from the nonlinear superposition of elementary instabilities and manifests as complex, yet deterministic temporal pulse break-up dynamics. We use the Darboux transformation to analytically describe the process and compare with experiments. In particular, we show how suitably low frequency modulation on a continuous wave field allows for the excitation of higher-order modulation instability through cascaded four-wave mixing.
Higher order statistics of the response of MDOF linear systems under polynomials of filtered normal white noises
1997
This paper exploits the work presented in the companion paper in order to evaluate the higher order statistics of the response of linear systems excited by polynomials of filtered normal processes. In fact, by means of a variable transformation, the original system is replaced by a linear one excited by external and linearly parametric white noise excitations. The transition matrix of the new enlarged system is obtained simply once the transition matrices of the original system and of the filter are evaluated. The method is then applied in order to evaluate the higher order statistics of the approximate response of nonlinear systems to which the pseudo-force method is applied.
Use of a running coupling in the NLO calculation of forward hadron production
2018
We address and solve a puzzle raised by a recent calculation [1] of the cross-section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an un- reasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by one to two orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artefact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to mo…
Monadic second-order logic over pictures and recognizability by tiling systems
1994
We show that a set of pictures (rectangular arrays of symbols) is recognized by a finite tiling system if and only if it is definable in existential monadic second-order logic. As a consequence, finite tiling systems constitute a notion of recognizability over two-dimensional inputs which at the same time generalizes finite-state recognizability over strings and matches a natural logic. The proof is based on the Ehrenfeucht-FraIsse technique for first-order logic and an implementation of “threshold counting” within tiling systems.
Top quark pair production at complete NLO accuracy with NNLO+NNLL′ corrections in QCD
2019
We describe predictions for top-quark pair differential distributions at hadron colliders, which combine state-of-the-art NNLO QCD calculations and NLO electroweak corrections together with double resummation at NNLL$'$ accuracy of threshold logarithms and small-mass logarithms. This is the first time that such a combination has appeared in the literature. Numerical results are presented for the invariant-mass distribution, the transverse-momentum distribution as well as rapidity distributions.
Kernel Spectral Angle Mapper
2016
This communication introduces a very simple generalization of the familiar spectral angle mapper (SAM) distance. SAM is perhaps the most widely used distance in chemometrics, hyperspectral imaging, and remote sensing applications. We show that a nonlinear version of SAM can be readily obtained by measuring the angle between pairs of vectors in a reproducing kernel Hilbert spaces. The kernel SAM generalizes the angle measure to higher-order statistics, it is a valid reproducing kernel, it is universal, and it has consistent geometrical properties that permit deriving a metric easily. We illustrate its performance in a target detection problem using very high resolution imagery. Excellent re…
Measurement of the Generalized Polarizabilities of the Proton at Intermediate $Q^2$
2021
Background: Generalized polarizabilities (GPs) are important observables to describe the nucleon structure, and measurements of these observables are still scarce. Purpose: This paper presents details of a virtual Compton scattering (VCS) experiment, performed at the A1 setup at the Mainz Microtron by studying the $e p \to e p \gamma$ reaction. The article focuses on selected aspects of the analysis. Method: The experiment extracted the $P_{LL} -P_{TT} / \epsilon$ and $P_{LT}$ structure functions, as well as the electric and magnetic GPs of the proton, at three new values of the four-momentum transfer squared $Q^2$: 0.10, 0.20 and 0.45 GeV$^2$. Results: We emphasize the importance of the ca…