Search results for "higher-order"
showing 10 items of 66 documents
Measurement of the Generalized Polarizabilities of the Proton at Intermediate $Q^2$
2021
Background: Generalized polarizabilities (GPs) are important observables to describe the nucleon structure, and measurements of these observables are still scarce. Purpose: This paper presents details of a virtual Compton scattering (VCS) experiment, performed at the A1 setup at the Mainz Microtron by studying the $e p \to e p \gamma$ reaction. The article focuses on selected aspects of the analysis. Method: The experiment extracted the $P_{LL} -P_{TT} / \epsilon$ and $P_{LT}$ structure functions, as well as the electric and magnetic GPs of the proton, at three new values of the four-momentum transfer squared $Q^2$: 0.10, 0.20 and 0.45 GeV$^2$. Results: We emphasize the importance of the ca…
Higher order statistics of the response of MDOF linear systems excited by linearly parametric white noises and external excitations
1997
The aim of this paper is the evaluation of higher order statistics of the response of linear systems subjected to external excitations and to linearly parametric white noise. The external excitations considered are deterministic or filtered white noise processes. The procedure implies the knowledge of the transition matrix connected to the linear system; this, however, has already been evaluated for obtaining the statistics at single times. The method, which avoids making further integrations for the evaluation of the higher order statistics, is very advantageous from a computational point of view.
Higher order statistics of the response of MDOF linear systems under polynomials of filtered normal white noises
1997
This paper exploits the work presented in the companion paper in order to evaluate the higher order statistics of the response of linear systems excited by polynomials of filtered normal processes. In fact, by means of a variable transformation, the original system is replaced by a linear one excited by external and linearly parametric white noise excitations. The transition matrix of the new enlarged system is obtained simply once the transition matrices of the original system and of the filter are evaluated. The method is then applied in order to evaluate the higher order statistics of the approximate response of nonlinear systems to which the pseudo-force method is applied.
Higher order statistics of the response of linear systems excited by polynomials of filtered Poisson pulses
1999
The higher order statistics of the response of linear systems excited by polynomials of filtered Poisson pulses are evaluated by means of knowledge of the first order statistics and without any further integration. This is made possible by a coordinate transformation which replaces the original system by a quasi-linear one with parametric Poisson delta-correlated input; and, for these systems, a simple relationship between first order and higher order statistics is found in which the transition matrix of the dynamical new system, incremented by the correction terms necessary to apply the Ito calculus, appears.
Combinatorial approaches: A new tool to search for highly structured β-hairpin peptides
2002
Here we present a combinatorial approach to evolve a stable β-hairpin fold in a linear peptide. Starting with a de novo -designed linear peptide that shows a β-hairpin structure population of around 30%, we selected four positions to build up a combinatorial library of 20 4 sequences. Deconvolution of the library using circular dichroism reduced such a sequence complexity to 36 defined sequences. Circular dichroism and NMR of these peptides resulted in the identification of two linear 14-aa-long peptides that in plain buffered solutions showed a percentage of β-hairpin structure higher than 70%. Our results show how combinatorial approaches can be used to obtain highly structured peptide s…
Transition form factors of the N(*()1535) as a dynamically generated resonance
2007
We discuss how electromagnetic properties provide useful tests of the nature of resonances, and we study these properties for the N*(1535) which appears dynamically generated from the strong interaction of mesons and baryons. Within this coupled channel chiral unitary approach, we evaluate the A_1/2 and S_1/2 helicity amplitudes as a function of Q^2 for the electromagnetic N*(1535) to gamma* N transition. Within the same formalism we evaluate the cross section for the reactions gamma N to eta N. We find a fair agreement for the absolute values of the transition amplitudes, as well as for the Q^2 dependence of the amplitudes, within theoretical and experimental uncertainties discussed in the…
Complete calculation of exclusive heavy vector meson production at next-to-leading order in the dipole picture
2022
Exclusive production of transversely polarized heavy vector mesons in deep inelastic scattering at high energy is calculated at next-to-leading order accuracy in the Color Glass Condensate framework. In addition to the first QCD correction proportional to the strong coupling constant $\alpha_s$, we systematically also include the first relativistic correction proportional to the heavy quark velocity squared $v^2$. When combined with our previously published results for longitudinal vector meson production at next-to-leading order accuracy, these results make phenomenological calculations of heavy vector meson production possible at the order $\mathcal{O}(\alpha_s v^0, \alpha_s^0 v^2)$. When…
Pion and kaon vector form factors
2001
We develop a unitarity approach to consider the final state interaction corrections to the tree level graphs calculated from Chiral Perturbation Theory ($\chi PT$) allowing the inclusion of explicit resonance fields. The method is discussed considering the coupled channel pion and kaon vector form factors. These form factors are then matched with the one loop $\chi PT$ results. A very good description of experimental data is accomplished for the vector form factors and for the $\pi\pi$ P-wave phase shifts up to $\sqrt{s}\lesssim 1.2$ GeV, beyond which multiparticle states play a non negligible role. In particular the low and resonance energy regions are discussed in detail and for the forme…
Running of the Charm-Quark Mass from HERA Deep-Inelastic Scattering Data
2017
Physics letters / B 775, 233 - 238 (2017). doi:10.1016/j.physletb.2017.11.002
Top quark pair production at complete NLO accuracy with NNLO+NNLL′ corrections in QCD
2019
We describe predictions for top-quark pair differential distributions at hadron colliders, which combine state-of-the-art NNLO QCD calculations and NLO electroweak corrections together with double resummation at NNLL$'$ accuracy of threshold logarithms and small-mass logarithms. This is the first time that such a combination has appeared in the literature. Numerical results are presented for the invariant-mass distribution, the transverse-momentum distribution as well as rapidity distributions.