Search results for "hormones"

showing 10 items of 1169 documents

Condition-dependent effects of corticosterone on a carotenoid-based begging signal in house sparrows

2008

International audience; Begging is a complex display involving a variety of different visual and auditory signals. Parents are thought to use these signals to adjust their investment in food provisioning. The mechanisms that ensure the honesty of begging displays as indicators of need have been recently investigated. It has been shown that levels of corticosterone (Cort), the hormone released during the stress response, increase during food shortage and are associated with an increased begging rate. In a recent study in house sparrows, although exogenous Cort increased begging rate, parents did not accordingly adjust their provisioning rate. Here, we tested the hypothesis that Cort might af…

0106 biological sciences01 natural sciencesNesting BehaviorFight-or-flight responseBehavioral Neurosciencechemistry.chemical_compoundEndocrinologyCorticosteroneAdaptation PsychologicalBeggingpolycyclic compoundsHouse sparrowCarotenoidchemistry.chemical_classificationCarotenoid0303 health sciencesFlange colorationPigmentationPoor body conditionhumanities[ SDE.MCG ] Environmental Sciences/Global ChangesSparrowshormones hormone substitutes and hormone antagonistsmedicine.medical_specialtyendocrine system[SDE.MCG]Environmental Sciences/Global ChangesParent–offspring conflictBiologyAffect (psychology)010603 evolutionary biology03 medical and health sciencesInternal medicinemedicinePasser domesticusAnimalsImmune responseCondition dependent030304 developmental biologyMouth[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyEndocrine and Autonomic SystemsFeeding BehaviorCarotenoids[SDE.ES]Environmental Sciences/Environmental and SocietyAnimal CommunicationEndocrinologychemistryImmune SystemBody ConstitutionParent–offspring conflict[SDE.BE]Environmental Sciences/Biodiversity and EcologyFood DeprivationCorticosteronePhotic Stimulation[ SDE.ES ] Environmental Sciences/Environmental and Society
researchProduct

Priming maritime pine megagametophytes during somatic embryogenesis improved plant adaptation to heat stress

2021

In the context of global climate change, forest tree research should be addressed to provide genotypes with increased resilience to high temperature events. These improved plants can be obtained by heat priming during somatic embryogenesis (SE), which would produce an epigenetic-mediated transgenerational memory. Thereby, we applied 37 °C or 50 °C to maritime pine (Pinus pinaster) megagametophytes and the obtained embryogenic masses went through the subsequent SE phases to produce plants that were further subjected to heat stress conditions. A putative transcription factor WRKY11 was upregulated in priming-derived embryonal masses, and also in the regenerated P37 and P50 plants, suggesting …

0106 biological sciences0301 basic medicine<i>Pinus pinaster</i>Somatic embryogenesisContext (language use)Pinus pinasterPlant SciencePriming (agriculture)BiologyPhotosynthesis01 natural sciencesArticleheat stress03 medical and health scienceschemistry.chemical_compoundheat stress ; HSP ; hormones ; Pinus pinaster ; photosynthesis ; priming ; ROS ; somatic embryogenesis ; transgenerational memory ; WRKYHSPprimingBiologyEcology Evolution Behavior and SystematicsphotosynthesisEcologyhormonesfungiBotanyWRKYfood and beveragesROStransgenerational memorysomatic embryogenesisbiology.organism_classificationHsp70Horticulture030104 developmental biologychemistryQK1-989ChlorophyllCytokinin<i>HSP</i>Pinus pinaster<i>WRKY</i>010606 plant biology & botany
researchProduct

Identification and expression analysis of theSpodoptera exiguaneuropeptidome under different physiological conditions

2018

Neuropeptides are small signalling molecules acting as neurohormones, neurotransmitters and neuromodulators. Being part of the chemical communication system between cells within an organism, they are involved in the regulation of different aspects of animal physiology and behaviour such as feeding, reproduction, development and locomotion. Transcriptomic data from larval and adult tissues have been obtained and mined to generate a comprehensive neuropeptidome for the polyphagous insect pest Spodoptera exigua. Sixty-three neuropeptides have been identified and described based on their tissue specificity and their regulation in response to different abiotic perturbations. Expression analyses …

0106 biological sciences0301 basic medicineAbiotic componentbiologymedia_common.quotation_subjectfungiMidgutInsectSpodopterabiology.organism_classification01 natural sciencesCell biologyTranscriptome010602 entomology03 medical and health sciences030104 developmental biologyInsect ScienceExiguaGeneticsNeurohormonesMolecular BiologyOrganismmedia_commonInsect Molecular Biology
researchProduct

The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling

2020

AbstractTomato is one of the most widely cultivated vegetable crops and a model for studying fruit biology. Although several genes involved in the traits of fruit quality, development and size have been identified, little is known about the regulatory genes controlling its growth. In this study, we characterized the role of the tomato SlCDF4 gene in fruit development, a cycling DOF-type transcription factor highly expressed in fruits. The targeted overexpression of SlCDF4 gene in the fruit induced an increased yield based on a higher amount of both water and dry matter accumulated in the fruits. Accordingly, transcript levels of genes involved in water transport and cell division and expans…

0106 biological sciences0301 basic medicineAgricultural geneticsCell divisionPlant molecular biologyMolecular biologyTranscriptional regulatory elementsPlant physiologyBiotecnologia agrícolalcsh:MedicineMolecular engineering in plantsPlantesBiology01 natural sciencesArticle03 medical and health sciencesSolanum lycopersicumPlant hormonesDry matterlcsh:ScienceGeneTranscription factorRegulator genePlant ProteinsMultidisciplinaryWater transportlcsh:RGenètica vegetalfood and beveragesGibberellinsUp-Regulation02.- Poner fin al hambre conseguir la seguridad alimentaria y una mejor nutrición y promover la agricultura sostenibleRepressor ProteinsHorticulturePlant BreedingGENETICA030104 developmental biologyFruitGibberellinlcsh:QPlant biotechnologyFISIOLOGIA VEGETALSink (computing)Plant sciences010606 plant biology & botanyBiotechnologySignal Transduction
researchProduct

Survival and gene expression under different temperature and humidity regimes in ants

2017

Short term variation in environmental conditions requires individuals to adapt via changes in behavior and/or physiology. In particular variation in temperature and humidity are common, and the physiological adaptation to changes in temperature and humidity often involves alterations in gene expression, in particular that of heat-shock proteins. However, not only traits involved in the resistance to environmental stresses, but also other traits, such as immune defenses, may be influenced indirectly by changes in temperature and humidity. Here we investigated the response of the ant F. exsecta to two temperature regimes (20 degrees C & 25 degrees C), and two humidity regimes (50% & 75%), for…

0106 biological sciences0301 basic medicineAtmospheric ScienceympäristöAcclimatizationGene Expressionlcsh:MedicinemuutosALFALFA LEAFCUTTING BEEBiochemistryImmune Receptors01 natural sciencesEndocrinologyACCLIMATIONmuurahaisetGene expressionMedicine and Health SciencesIMMUNE-RESPONSEInsulinTRANSCRIPTIONgeeniekspressiolcsh:SciencePOPULATIONHeat-Shock ProteinsProtein MetabolismsopeutuminenPrincipal Component Analysiseducation.field_of_studyImmune System ProteinsMultidisciplinaryBehavior AnimalEcologyolosuhteetTemperaturefood and beveragesANThumanitiesInsectsimmuunijärjestelmä1181 Ecology evolutionary biologyPhysical SciencesMEGACHILE-ROTUNDATAlämpötilaympäristönmuutoksetResearch ArticleNutrient and Storage ProteinsSignal TransductionArthropodaImmunologyPopulationZoologyBiology010603 evolutionary biologyAcclimatization03 medical and health sciencesMeteorologyTwo temperatureStress PhysiologicalGeneticsAnimalseducationGeneProportional Hazards ModelsDiabetic EndocrinologyAntsBEAUVERIA-BASSIANAGene Expression Profilinglcsh:ROrganismshumidityBiology and Life SciencesProteinsHumiditytemperatureHumidityEigenvaluesCell BiologyDESICCATIONInvertebratesHymenopteraHormonesMetabolismAlgebra030104 developmental biologyGene Expression RegulationLinear AlgebraDROSOPHILA-MELANOGASTERkosteusEarth Sciencesgene expressionta1181lcsh:QFormica exsectaDesiccationRESISTANCEMathematics
researchProduct

Melatonin in the seasonal response of the aphid Acyrthosiphon pisum.

2018

Aphids display life cycles largely determined by the photoperiod. During the warm long-day seasons, most aphid species reproduce by viviparous parthenogenesis. The shortening of the photoperiod in autumn induces a switch to sexual reproduction. Males and sexual females mate to produce overwintering resistant eggs. In addition to this full life cycle (holocycle), there are anholocyclic lineages that do not respond to changes in photoperiod and reproduce continuously by parthenogenesis. The molecular or hormonal events that trigger the seasonal response (i.e., induction of the sexual phenotypes) are still unknown. Although circadian synthesis of melatonin is known to play a key role in verteb…

0106 biological sciences0301 basic medicineCentral Nervous SystemMaleendocrine systemAANATPhotoperiodCircadian clockZoology01 natural sciencesArylalkylamine N-AcetyltransferaseGeneral Biochemistry Genetics and Molecular BiologyMelatonin03 medical and health sciencesmedicineAnimalsCircadian rhythmEcology Evolution Behavior and SystematicsMelatoninphotoperiodismAphidbiologyfood and beveragesbiology.organism_classificationAcyrthosiphon pisumSexual reproduction010602 entomology030104 developmental biologyInsect ScienceAphidsFemaleSeasonsAgronomy and Crop Sciencehormones hormone substitutes and hormone antagonistsmedicine.drugInsect scienceReferences
researchProduct

Molecular Responses to Small Regulating Molecules against Huanglongbing Disease

2016

Huanglongbing (HLB; citrus greening) is the most devastating disease of citrus worldwide. No cure is yet available for this disease and infected trees generally decline after several months. Disease management depends on early detection of symptoms and chemical control of insect vectors. In this work, different combinations of organic compounds were tested for the ability to modulate citrus molecular responses to HLB disease beneficially. Three small-molecule regulating compounds were tested: 1) L-arginine, 2) 6-benzyl-adenine combined with gibberellins, and 3) sucrose combined with atrazine. Each treatment contained K-phite mineral solution and was tested at two different concentrations. T…

0106 biological sciences0301 basic medicineSucroseLeavesCitruslcsh:MedicineGene ExpressionSecondary MetabolismPlant ScienceDisaccharidesBiochemistry01 natural sciencesStarchesGene Expression Regulation PlantINFECTIONMedicine and Health SciencesInnatePlant HormonesAmino Acidslcsh:ScienceImmune ResponseGENE-EXPRESSIONMultidisciplinaryNONHOST RESISTANCEbiologyOrganic CompoundsPlant BiochemistryPlant AnatomyChemistryPhenotypeBiochemistryDEFENSE RESPONSESCANDIDATUS-LIBERIBACTER-ASIATICUS; ARABIDOPSIS-THALIANA; NONHOST RESISTANCE; DEFENSE RESPONSES; CITRUS-SINENSIS; GENE-EXPRESSION; INFECTION; PLANTS; IDENTIFICATION; TRANSCRIPTOMEPhysical SciencesHost-Pathogen InteractionsCarbohydrate MetabolismSucrose synthaseAtrazineGibberellinBasic Amino AcidsStarch synthaseSystemic acquired resistanceResearch ArticleCITRUS-SINENSISGeneral Science & TechnologyPhysiologicalImmunologyCarbohydratesCarbohydrate metabolismStressArginine03 medical and health sciencesStress PhysiologicalSettore AGR/07 - Genetica AgrariaGeneticsPLANTSTRANSCRIPTOMESecondary metabolismGenePlant DiseasesIDENTIFICATIONGene Expression Profilinglcsh:ROrganic ChemistryImmunityChemical CompoundsBiology and Life SciencesProteinsPlantBiotic stressCANDIDATUS-LIBERIBACTER-ASIATICUSHormonesGibberellinsImmunity InnateMetabolism030104 developmental biologyGene Expression RegulationARABIDOPSIS-THALIANAbiology.proteinlcsh:Q010606 plant biology & botanyPLOS ONE
researchProduct

The In Vitro Interaction of 12-Oxophytodienoic Acid and Related Conjugated Carbonyl Compounds with Thiol Antioxidants

2021

α,β-unsaturated carbonyls interfere with numerous plant physiological processes. One mechanism of action is their reactivity toward thiols of metabolites like cysteine and glutathione (GSH). This work aimed at better understanding these interactions. Both 12-oxophytodienoic acid (12-OPDA) and abscisic acid (ABA) conjugated with cysteine. It was found that the reactivity of α,β-unsaturated carbonyls with GSH followed the sequence trans-2-hexenal &lt

0106 biological sciences0301 basic medicinecysteine covalent modification570Isomerase activityArabidopsis thalianaArabidopsislcsh:QR1-50201 natural sciencesBiochemistryArticleAntioxidantslcsh:Microbiology03 medical and health scienceschemistry.chemical_compoundThioredoxinsPlant Growth RegulatorsmedicineCysteineSulfhydryl CompoundsMolecular BiologyCyclophilinchemistry.chemical_classificationChemistry<i>Arabidopsis thaliana</i>peroxiredoxinGlutathionethioredoxinphytohormones030104 developmental biologyMechanism of actionBiochemistryprotein–ligand interactioncyclophilinThiolFatty Acids Unsaturatedmedicine.symptomThioredoxinPeroxiredoxinthiol antioxidants010606 plant biology & botanyCysteineBiomolecules
researchProduct

Aspartic Proteinase from Barley Seeds is Related to Animal Cathepsin D

1991

In contrast to the well-characterized mammalian aspartic proteinases, plant aspartic proteinases have received little attention so far. Aspartic proteinase activity has been detected, for example, in resting seeds of scots pine (Salmia et al., 1978), soybean (Bond & Bowles, 1983), barley and wheat (Morris et al., 1985) as well as in leaves of orange (Garcia-Martinez & Moreno, 1986) and barley (Kervinen et al., 1990). Aspartic proteinases have been purified from the seeds of rice (Doi et al., 1980), cucumber, squash (Polanowski et al 1985) and wheat (Dunaevsky et al., 1989) as well as from the leaves of tomato (Rodrigo et al., 1989). The plant aspartic proteinases have been reported to enhan…

0106 biological sciences2. Zero hungerchemistry.chemical_classification0303 health sciencesAspartic Proteinasesendocrine system diseasesfunginutritional and metabolic diseasesfood and beveragesCathepsin DOrange (colour)01 natural sciences03 medical and health sciencesHydrolysisBiochemistryCathepsin OchemistryProteinase activityStorage proteinhormones hormone substitutes and hormone antagonists030304 developmental biology010606 plant biology & botanySquash
researchProduct

Gibberellic acid in Citrus spp. flowering and fruiting: A systematic review

2019

[EN] Background In Citrus spp., gibberellic acid (GA) has been proposed to improve different processes related to crop cycle and yield. Accordingly, many studies have been published about how GA affects flowering and fruiting. Nevertheless, some such evidence is contradictory and the use of GA applications by farmers are still confusing and lack the expected results. Purpose This review aims to collate, present, analyze and synthesize the most relevant empirical evidence to answer the following questions: (i) how does gibberellic acid act on flowering and fruiting of citrus trees?; (ii) why is all this knowledge sometimes not correctly used by farmers to solve yield problems relating to flo…

0106 biological sciencesCitrusLeavesPlant Science01 natural sciencesBiochemistrychemistry.chemical_compoundDatabase and Informatics MethodsPlant Growth RegulatorsPlant HormonesDatabase SearchingMultidisciplinaryPlant BiochemistryOrganic CompoundsPlant AnatomyQREukaryota04 agricultural and veterinary sciencesPlantsCrop cycleHorticultureChemistryPhysical SciencesMedicineGibberellinCitrus × sinensisResearch ArticleScienceBOTANICACarbohydratesFlowersBiologyResearch and Analysis MethodsOrangesFruitsFruit setAbscissionGibberellic acidOrganic ChemistryOrganismsChemical CompoundsBiology and Life SciencesHormonesGibberellinschemistryFruit040103 agronomy & agriculture0401 agriculture forestry and fisheries010606 plant biology & botanyField conditionsPLoS ONE
researchProduct