Search results for "huntingtin"
showing 10 items of 20 documents
The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and…
2018
[EN] Members of the Junctophilin (JPH) protein family have emerged as key actors in all excitable cells, with crucial implications for human pathophysiology. In mammals, this family consists of four members (JPH1-JPH4) that are differentially expressed throughout excitable cells. The analysis of knockout mice lacking JPH subtypes has demonstrated their essential contribution to physiological functions in skeletal and cardiac muscles and in neurons. Moreover, mutations in the human JPH2 gene are associated with hypertrophic and dilated cardiomyopathies; mutations in JPH3 are responsible for the neurodegenerative Huntington's disease-like-2 (HDL2), whereas JPH1 acts as a genetic modifier in C…
The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease
2017
In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3). Under acute stress and during cellular aging, BAG3 in …
Tetrahydrocarbazoles decrease elevated SOCE in medium spiny neurons from transgenic YAC128 mice, a model of Huntington's disease
2017
AbstractHuntington's disease (HD) is a hereditary neurodegenerative disease caused by a polyglutamine expansion within the huntingtin (HTT) gene. One of the cellular functions that is dysregulated in HD is store-operated calcium entry (SOCE), a process in which the depletion of Ca2+ from the endoplasmic reticulum (ER) induces Ca2+ influx from the extracellular space. We detected an enhanced activity of SOC channels in medium spiny neurons (MSNs) from YAC128 mice, a transgenic model of HD, and investigated whether this could be reverted by tetrahydrocarbazoles. The compound 6-bromo-N-(2-phenylethyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine hydrochloride was indeed able to restore the disturbed…
Evolving Notch polyQ tracts reveal possible solenoid interference elements.
2016
ABSTRACTPolyglutamine (polyQ) tracts in regulatory proteins are extremely polymorphic. As functional elements under selection for length, triplet repeats are prone to DNA replication slippage and indel mutations. Many polyQ tracts are also embedded within intrinsically disordered domains, which are less constrained, fast evolving, and difficult to characterize. To identify structural principles underlying polyQ tracts in disordered regulatory domains, here I analyze deep evolution of metazoan Notch polyQ tracts, which can generate alleles causing developmental and neurogenic defects. I show that Notch features polyQ tract turnover that is restricted to a discrete number of conserved “polyQ …
Pharmacological disruption of the MID1/α4 interaction reduces mutant Huntingtin levels in primary neuronal cultures.
2017
Expression of mutant Huntingtin (HTT) protein is central to the pathophysiology of Huntington's Disease (HD). The E3 ubiquitin ligase MID1 appears to have a key role in facilitating translation of the mutant HTT mRNA suggesting that interference with the function of this complex could be an attractive therapeutic approach. Here we describe a peptide that is able to disrupt the interaction between MID1 and the α4 protein, a regulatory subunit of protein phosphatase 2A (PP2A). By fusing this peptide to a sequence from the HIV-TAT protein we demonstrate that the peptide can disrupt the interaction within cells and show that this results in a decrease in levels of ribosomal S6 phosphorylation a…
A novel function of Huntingtin in the cilium and retinal ciliopathy in Huntington's disease mice
2015
Huntington's disease (HD) is a neurodegenerative disorder caused by the toxic expansion of polyglutamine in the Huntingtin (HTT) protein. The pathomechanism is complex and not fully understood. Increasing evidence indicates that the loss of normal protein function also contributes to the pathogenesis, pointing out the importance of understanding the physiological roles of HTT. We provide evidence for a novel function of HTT in the cilium. HTT localizes in diverse types of cilia — including 9 + 0 non-motile sensory cilia of neurons and 9 + 2 motile multicilia of trachea and ependymal cells — which exert various functions during tissue development and homeostasis. In the photoreceptor cilium,…
Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates.
2013
Summary Aggregation of misfolded proteins and the associated loss of neurons are considered a hallmark of numerous neurodegenerative diseases. Optineurin is present in protein inclusions observed in various neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Huntington's disease, Alzheimer's disease, Parkinson's disease, Creutzfeld-Jacob disease and Pick's disease. Optineurin deletion mutations have also been described in ALS patients. However, the role of optineurin in mechanisms of protein aggregation remains unclear. In this report, we demonstrate that optineurin recognizes various protein aggregates via its C-terminal coiled-coil domain in a ubiquitin-independent m…
Expression of genes encoding the calcium signalosome in cellular and transgenic models of Huntington's disease
2013
Huntington's disease (HD) is a hereditary neurodegenerative disease caused by the expansion of a polyglutamine stretch in the huntingtin (HTT) protein and characterized by dysregulated calcium homeostasis. We investigated whether these disturbances are correlated with changes in the mRNA level of the genes that encode proteins involved in calcium homeostasis and signaling (i.e., the calciosome). Using custom-made TaqMan low-density arrays containing probes for 96 genes, we quantified mRNA in the striatum in YAC128 mice, a model of HD, and wildtype mice. HTT mutation caused the increased expression of some components of the calcium signalosome, including calretinin, presenilin 2, and calmyri…
AAV Vector–mediated RNAi of Mutant Huntingtin Expression Is Neuroprotective in a Novel Genetic Rat Model of Huntington's Disease
2008
We report the characterization of a new rapid-onset model of Huntington's disease (HD) generated by adeno-associated virus (AAV) vector–mediated gene transfer of N-terminal huntingtin (htt) constructs into the rat striatum. Expression of exon 1 of mutant htt containing 70 CAG repeats rapidly led to neuropathological features associated with HD. In addition, we report novel data relating to neuronal transduction of AAV vectors that modulated the phenotype observed in this model. Quantitative reverse transcriptase–polymerase chain reaction (RT–PCR) revealed that AAV vector–mediated expression in the striatum increased by >100-fold as compared to the endogenous htt level. Moreover, AAV vectors…
Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease.
2010
Endocannabinoids act as neuromodulatory and neuroprotective cues by engaging type 1 cannabinoid receptors. These receptors are highly abundant in the basal ganglia and play a pivotal role in the control of motor behaviour. An early downregulation of type 1 cannabinoid receptors has been documented in the basal ganglia of patients with Huntington's disease and animal models. However, the pathophysiological impact of this loss of receptors in Huntington's disease is as yet unknown. Here, we generated a double-mutant mouse model that expresses human mutant huntingtin exon 1 in a type 1 cannabinoid receptor-null background, and found that receptor deletion aggravates the symptoms, neuropatholog…