Search results for "hydraulics"
showing 10 items of 86 documents
Numerical and experimental investigation of a cross-flow water turbine
2016
ABSTRACTA numerical and experimental study was carried out for validation of a previously proposed design criterion for a cross-flow turbine and a new semi-empirical formula linking inlet velocity to inlet pressure. An experimental test stand was designed to conduct a series of experiments and to measure the efficiency of the turbine designed based on the proposed criterion. The experimental efficiency was compared to that from numerical simulations performed using a RANS model with a shear stress transport (SST) turbulence closure. The proposed semi-empirical velocity formula was also validated against the numerical solutions for cross-flow turbines with different geometries and boundary c…
Fluvial eco-hydraulics and morphodynamics: New insights and challenges
2015
The paper concerns the mechanisms underlying the distribution of the bed shear stress in meandering bends. Literature indicates that cross-stream circulation strongly affects the redistribution of the downstream velocity, but the feedback between them is still poorly understood. The aim of this paper is to gain some insight into how the momentum transport by cross-stream circulation contributes to the bed shear stress redistribution. Experimental analysis, based on a detailed dataset collected in a large-amplitude meandering laboratory flume, is presented. From these data an evaluation is made of the terms in the depth-averaged momentum equations and the analysis is especially devoted to te…
Hydraulic Analysis of Blanket Cooling System
2014
New technique for measuring water depth in rill channels
2019
Abstract Water erosion is one of the most important soil degradation processes and rill erosion contribution to total soil loss is usually dominant as compared to interrill erosion. Rill erosion modelling requires that rill flow has to be adequately modelled. Flow depths in rills are typically of the order of millimeters to several centimeters and bed topography, characterized by steep slope values, significantly affects flow hydraulics. In this paper, a new technique for measuring the water depth inside a rill channel is proposed and the effects on flow resistance estimate are examined. This technique couples an accurate ground survey of the rill channel, obtained by close-range photogramm…
Cold Leg LBLOCA uncertainty analysis using TRACE/DAKOTA coupling
2022
Abstract Safety analyses for nuclear power plants were carried out in the past using a conservative approach. With the increase of the phenomenological knowledge, through experimental data, and computational power, it became possible to adopt best estimate thermal- hydraulic system codes to perform deterministic safety analyses. However, some uncertainties are still present in the models, correlations, initial and boundary conditions, etc. Therefore, it is fundamental to quantify the uncertainty of calculation. This approach is called “Best Estimate Plus Uncertainty” (BEPU). Among the available uncertainty analysis methodologies, the probabilistic method to propagate input uncertainty is wi…
Thermal-hydraulic and thermo-mechanical simulations of Water-Heavy Liquid Metal interactions towards the DEMO WCLL breeding blanket design
2019
Abstract The Water-Cooled Lithium Lead breeding blanket concept foresees the eutectic lithium-lead (Pb-15.7Li) alloy being cooled by pressurized sub-cooled water (temperature 295–328 °C; pressure 15.5 MPa) flowing in double wall tubes. Therefore, the interaction between the Pb-15.7Li and water (e.g. tube rupture) represents one of the main safety concerns for the design and safety analysis. Available LIFUS5/Mod2 experimental data are employed to assess the performances of thermal-hydraulic and thermo-mechanic codes. Thermal-hydraulic simulations, by SIMMER-III code, are focused on the prediction of the thermodynamic interaction among the fluids. ABAQUS Finite Element code, used for the desi…
Adaptive Feedforward Control of a Pressure Compensated Differential Cylinder
2020
This paper presents the design, simulation and experimental verification of adaptive feedforward motion control for a hydraulic differential cylinder. The proposed solution is implemented on a hydraulic loader crane. Based on common adaptation methods, a typical electro-hydraulic motion control system has been extended with a novel adaptive feedforward controller that has two separate feedforward states, i.e, one for each direction of motion. Simulations show convergence of the feedforward states, as well as 23% reduction in root mean square (RMS) cylinder position error compared to a fixed gain feedforward controller. The experiments show an even more pronounced advantage of the proposed c…
Progress in the initial design activities for the European DEMO divertor: Subproject "Cassette"
2017
Abstract Since 2014 preconceptual design activities for European DEMO divertor have been conducted as an integrated, interdisciplinary R&D effort in the framework of EUROfusion Consortium. Consisting of two subproject areas, ‘Cassette’ and ‘Target’, this divertor project has the objective to deliver a holistic preconceptual design concept together with the key technological solutions to materialize the design. In this paper, a brief overview on the recent results from the subproject ‘Cassette’ is presented. In this subproject, the overall cassette system is engineered based on the load analysis and specification. The preliminary studies covered multi-physical analyses of neutronic, thermal,…
Numerical simulation of the transient thermal-hydraulic behaviour of the ITER blanket cooling system under the draining operational procedure
2015
Abstract Within the framework of the research and development activities supported by the ITER Organization on the blanket system issues, an intense analysis campaign has been performed at the University of Palermo with the aim to investigate the thermal-hydraulic behaviour of the cooling system of a standard 20° sector of ITER blanket during the draining transient operational procedure. The analysis has been carried out following a theoretical-computational approach based on the finite volume method and adopting the RELAP5 system code. In a first phase, attention has been focused on the development and validation of the finite volume models of the cooling circuits of the most demanding mod…
A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects
2018
[EN] The use of anaerobic membrane bioreactor technology (AnMBR) is rapidly expanding. However, depending on the application, AnMBR design and operation is not fully mature, and needs further research to optimize process efficiency and enhance applicability. This paper reviews state-of-the-art of AnMBR focusing on modelling and control aspects. Quantitative environmental and economic evaluation has demonstrated substantial advantages in application of AnMBR to domestic wastewater treatment, but detailed modelling is less mature. While anaerobic process modelling is generally mature, more work is needed on integrated models which include coupling between membrane performance (including fouli…