Search results for "hyperbolic manifold"

showing 5 items of 15 documents

The horospherical Gauss-Bonnet type theorem in hyperbolic space

2006

We introduce the notion horospherical curvatures of hypersurfaces in hyperbolic space and show that totally umbilic hypersurfaces with vanishing cur- vatures are only horospheres. We also show that the Gauss-Bonnet type theorem holds for the horospherical Gauss-Kronecker curvature of a closed orientable even dimensional hypersurface in hyperbolic space. + (i1) by using the model in Minkowski space. We introduced the notion of hyperbolic Gauss indicatrices slightly modified the definition of hyperbolic Gauss maps. The notion of hyperbolic indicatrices is independent of the choice of the model of hyperbolic space. Using the hyperbolic Gauss indicatrix, we defined the principal hyperbolic curv…

Pure mathematicsMathematics::Dynamical SystemsGauss-Bonnet type theoremHyperbolic groupMathematics::Complex VariablesGeneral MathematicsHyperbolic spaceMathematical analysisHyperbolic manifoldUltraparallel theoremhorospherical geometryhyperbolic Gauss mapshypersurfacesRelatively hyperbolic groupMathematics::Geometric Topology53A3553A0558C27hyperbolic spaceHyperbolic angleMathematics::Differential GeometryMathematics::Representation TheoryHyperbolic triangleHyperbolic equilibrium pointMathematics
researchProduct

Appendix: Diophantine Approximation on Hyperbolic Surfaces

2002

In this (independent) appendix, we study the Diophantine approximation properties for the particular case of the cusped hyperbolic surfaces, in the spirit of Sect. 2 (or [11]), and the many still open questions that arise for them. We refer to [9], [10]for fundamental results and further developments. We study in particular the distance to a cusp of closed geodesics on a hyperbolic surface.

Surface (mathematics)Cusp (singularity)Pure mathematicsGeodesicDiophantine setMathematics::Number TheoryDiophantine equationMathematical analysisHyperbolic manifoldDiophantine approximationMathematics::Geometric TopologyMathematicsClosed geodesic
researchProduct

On bounds for total absolute curvature of surfaces in hyperbolic 3-space

2003

Abstract We construct examples of surfaces in hyperbolic space which do not satisfy the Chern–Lashof inequality (which holds for immersed surfaces in Euclidean space). To cite this article: R. Langevin, G. Solanes, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Surface (mathematics)Differential geometryEuclidean spaceHyperbolic spaceMathematical analysisHyperbolic manifoldTotal curvatureGeneral MedicineCurvatureHyperbolic triangleMathematicsComptes Rendus Mathematique
researchProduct

Non-wandering sets with non-empty interiors

2003

We study diffeomorphisms of a closed connected manifold whose non-wandering set has a non-empty interior and conjecture that C1-generic diffeomorphisms whose non-wandering set has a non-empty interior are transitive. We prove this conjecture in three cases: hyperbolic diffeomorphisms, partially hyperbolic diffeomorphisms with two hyperbolic bundles, and tame diffeomorphisms (in the first case, the conjecture is folklore; in the second one, it follows by adapting the proof in Brin (1975 Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature Funct. Anal. Appl. 9 9–19)).We study this conjecture without global assumptions and pro…

Transitive relationPure mathematicsClass (set theory)Mathematics::Dynamical SystemsConjectureDynamical systems theoryApplied MathematicsMathematical analysisGeneral Physics and AstronomyHyperbolic manifoldStatistical and Nonlinear PhysicsManifoldSet (abstract data type)Homoclinic orbitMathematics::Symplectic GeometryMathematical PhysicsMathematicsNonlinearity
researchProduct

Hyperbolic isometries versus symmetries of links

2009

We prove that every finite group is the orientation-preserving isometry group of the complement of a hyperbolic link in the 3-sphere.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Pure mathematicsHyperbolic groupHyperbolic linkTotally geodesic surfaces01 natural sciencesRelatively hyperbolic group57M60Mathematics - Geometric Topology[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Hyperbolic linksHyperbolic space010102 general mathematicsHyperbolic 3-manifoldHyperbolic manifoldGeometric Topology (math.GT)Algebra010307 mathematical physicsGeometry and TopologyIsometry groupHyperbolic Dehn surgeryHyperbolic Dehn surgeryTopology and its Applications
researchProduct