Search results for "industrial engineering"
showing 10 items of 835 documents
Autonomous Bearing Fault Diagnosis Method based on Envelope Spectrum
2017
Abstract Rolling element bearings are one of the fundamental components of a machine, and their failure is the most frequent cause of machine breakdown. Monitoring the bearing condition is vital to preventing unexpected shutdowns and improving their maintenance planning. Specifically, the bearing vibration can be measured and analyzed to diagnose bearing faults. Accurate fault diagnosis can be achieved by analyzing the envelope spectrum of a narrowband filtered vibration signal. The optimal narrow-band is centered at the resonance frequency of the bearing. However, how to determine the optimal narrow-band is a challenge. Several methods aim to identify the optimal narrow-band, but they are …
Failure maps to assess bearing performances of glass composite laminates
2018
Aim of this article is the assessment of the bearing mechanical performances of pin-loaded glass laminates as function of their geometrical configuration. To this concern, 32 specimens having different hole diameter (D), laminate width (W), and hole center to laminate free edge distance (E) have been tested under bearing conditions. The maximum bearing stress and the stress-displacement curves were analyzed as function both of hole to laminate free edge distance E and hole diameter D. Moreover, an experimental 2D failure map was created by placing the experimental results (i.e., the kind of failure mechanism occurred for each geometrical configuration) in the plane E/D versus W/D ratios. In…
Multi-Component Fault Detection in Wind Turbine Pitch Systems Using Extended Park's Vector and Deep Autoencoder Feature Learning
2018
Pitch systems are among the wind turbine components with most frequent failures. This article presents a multicomponent fault detection for induction motors and planetary gearboxes of the electric pitch drives using only the three-phase motor line currents. A deep autoencoder is used to extract features from the extended Park's vector modulus of the motor three-phase currents and a support vector machine to classify faults. The methodology is validated in a laboratory setup of a scaled pitch drive, with four commonly occurring faults, namely, the motor stator turns fault, broken rotor bars fault, planetary gearbox bearing fault and planet gear faults, under varying load and speed conditions.
Ant Colony Optimisation-Based Classification Using Two-Dimensional Polygons
2016
The application of Ant Colony Optimization to the field of classification has mostly been limited to hybrid approaches which attempt at boosting the performance of existing classifiers (such as Decision Trees and Support Vector Machines (SVM)) — often through guided feature reductions or parameter optimizations.
Reducing the observation error in a WSN through a consensus-based subspace projection
2013
An essential process in a Wireless Sensor Network is the noise mitigation of the measured data, by exploiting their spatial correlation. A widely used technique to achieve this reduction is to project the measured data into a proper subspace. We present a low complexity and distributed algorithm to perform this projection. Unlike other algorithms existing in the literature, which require the number of connections at every node to be larger than the dimension of the involved subspace, our algorithm does not require such dense network topologies for its applicability, making it suitable for a larger number of scenarios. Our proposed algorithm is based on the execution of several consensus pro…
Advanced teleoperation and control system for industrial robots based on augmented virtuality and haptic feedback
2021
[EN] There are some industrial tasks that are still mainly performed manually by human workers due to their complexity, which is the case of surface treatment operations (such as sanding, deburring, finishing, grinding, polishing, etc.) used to repair defects. This work develops an advanced teleoperation and control system for industrial robots in order to assist the human operator to perform the mentioned tasks. On the one hand, the controlled robotic system provides strength and accuracy, holding the tool, keeping the right tool orientation and guaranteeing a smooth approach to the workpiece. On the other hand, the advanced teleoperation provides security and comfort to the user when perf…
Teleoperation of industrial robot manipulators based on augmented reality
2020
[EN] This research develops a novel teleoperation for robot manipulators based on augmented reality. The proposed interface is equipped with full capabilities in order to replace the classical teach pendant of the robot for carrying out teleoperation tasks. The proposed interface is based on an augmented reality headset for projecting computer-generated graphics onto the real environment and a gamepad to interact with the computer-generated graphics and provide robot commands. In order to demonstrate the benefits of the proposed method, several usability tests were conducted using a 6R industrial robot manipulator in order to compare the proposed interface and the conventional teach pendant…
Modeling of an active torsion bar automotive suspension for ride comfort and energy analysis in standard road profiles
2019
Abstract Chassis technology is evolving towards active suspension, in which actuators can provide forces to each wheel individually. This overcomes the traditional trade-off between comfort and handling, at the expense of increased complexity and electric consumption. To reduce power demand, regenerative solutions capable of harvesting a certain amount of energy otherwise dissipated in vehicle suspensions and to enhance vehicle dynamics for improving ride comfort and road safety at the same time have been researched. In this paper, an active suspension based on a torsion bar is modeled and analyzed under the excitation from standardized road profiles according to the ISO 8608 norm. A skyhoo…
A Mathematical Model for Vehicle-Occupant Frontal Crash Using Genetic Algorithm
2016
In this paper, a mathematical model for vehicle-occupant frontal crash is developed. The developed model is represented as a double-spring-mass-damper system, whereby the front mass and the rear mass represent the vehicle chassis and the occupant, respectively. The springs and dampers in the model are nonlinear piecewise functions of displacements and velocities respectively. More specifically, a genetic algorithm (GA) approach is proposed for estimating the parameters of vehicle front structure and restraint system. Finally, it is shown that the obtained model can accurately reproduce the real crash test data taken from the National Highway Traffic Safety Administration (NHTSA). The maximu…
Geometrical deviation of end-of-life parts as a consequence of reshaping by single point incremental forming
2021
AbstractPutting in place circular economy strategies is an urgent challenge to face. In this scenario, manufacturing processes play a relevant role as efficient material reuse enabler. Scientists have to make an effort either to find new process or to rethink old process to reprocess end-of-life (EoL) component to recover both material and functions. In this paper, single point incremental forming (SPIF) process is used for reshaping sheet metal EoL components. The entire process chain was replicated including both deep drawing process (to imitate the end-of-life component) as well as SPIF operations (to obtain the reshaped components). The geometrical deviation as a consequence of SPIF ope…