Search results for "infinity"

showing 10 items of 74 documents

A New Set of Quartic Trivariate Polynomial Equations for Stratified Camera Self-calibration under Zero-Skew and Constant Parameters Assumptions

2012

This paper deals with the problem of self-calibrating a moving camera with constant parameters. We propose a new set of quartic trivariate polynomial equations in the unknown coordinates of the plane at infinity derived under the no-skew assumption. Our new equations allow to further enforce the constancy of the principal point across all images while retrieving the plane at infinity. Six such polynomials, four of which are independent, are obtained for each triplet of images. The proposed equations can be solved along with the so-called modulus constraints and allow to improve the performance of existing methods.

PolynomialZero skewCalibration (statistics)Mathematical analysisPrincipal point[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020207 software engineering02 engineering and technology[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Set (abstract data type)[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Plane at infinityQuartic functionComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingConstant (mathematics)ComputingMilieux_MISCELLANEOUSMathematics
researchProduct

An LMI approach to vibration control of base-isolated building structures with delayed measurements

2010

In this article, we address a convex optimisation approach to the problem of state-feedback H∞ control design for vibration reduction of base-isolated building structures with delayed measurements, where the delays are time-varying and bounded. An appropriate Lyapunov-Krasovskii functional and some free-weighting matrices are utilised to establish some delay-range-dependent sufficient conditions for the design of desired controllers in terms of linear matrix inequalities. The controller, which guarantees asymptotic stability and an H∞ performance, simultaneously, for the closed-loop system of the structure, is then developed. The performance of the controller is evaluated by means of simula…

Lyapunov functionEngineeringbusiness.industryVibration controlLinear matrix inequalityControl engineeringComputer Science ApplicationsTheoretical Computer Sciencesymbols.namesakeH-infinity methods in control theoryVibration isolationExponential stabilityControl and Systems EngineeringControl theorysymbolsbusinessReduction (mathematics)International Journal of Systems Science
researchProduct

One, Two, Three,…, Infinity

1999

As concluding remarks to the European Few-Body Conference, the author presents a parallelism between the Few-Body and the Many-Body theories along the last years.

AlgebraParallelism (rhetoric)media_common.quotation_subjectInfinitymedia_commonMathematics
researchProduct

Electrostatic backscattering by insulating obstacles

2012

AbstractWe introduce and analyze backscattering data for a three-dimensional obstacle problem in electrostatics. In particular, we investigate the asymptotic behavior of these data as (i) the measurement point goes to infinity and (ii) the obstacles shrink to individual points. We also provide numerical simulations of these data.

Measurement pointApplied Mathematicsmedia_common.quotation_subjectMathematical analysisInfinityElectrostaticsObstacle problemComputational MathematicsElectrostaticsObstacle problemCalculusBackscattering datamedia_commonMathematicsJournal of Computational and Applied Mathematics
researchProduct

Voisinages tubulaires épointés et homotopie stable à l'infini

2022

We initiate a study of punctured tubular neighborhoods and homotopy theory at infinity in motivic settings. We use the six functors formalism to give an intrinsic definition of the stable motivic homotopy type at infinity of an algebraic variety. Our main computational tools include cdh-descent for normal crossing divisors, Euler classes, Gysin maps, and homotopy purity. Under-adic realization, the motive at infinity recovers a formula for vanishing cycles due to Rapoport-Zink; similar results hold for Steenbrink's limiting Hodge structures and Wildeshaus' boundary motives. Under the topological Betti realization, the stable motivic homotopy type at infinity of an algebraic variety recovers…

links of singularities[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Motivic homotopy theorypunctured tubular neighborhoods[MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT]stable homotopy at infinityMathematics::Algebraic TopologyMathematics - Algebraic Geometrylinks of singularities.Mathematics::Algebraic Geometryquadratic invariantsMathematics::K-Theory and HomologyFOS: MathematicsAlgebraic Topology (math.AT)14F42 19E15 55P42 14F45 55P57Mathematics - Algebraic TopologyAlgebraic Geometry (math.AG)qua- dratic invariants
researchProduct

Gain-scheduled H-infinity observer design for nonlinear stochastic systems with time-delay and actuator saturation

2012

In this paper, we propose a method for designing continuous gain-scheduled robust H ∞ observer on a class of extended stochastic nonlinear systems subject to time delay and actuator saturation. Initially, gradient linearization procedure is applied to describe such extended nonlinear systems into several model-based linear systems. Next, a robust linear H ∞ observer is designed to such linear stochastic models. Subsequently, a convex hull set is investigated and sufficient condition is derived in terms of feedback observer to determine whether a given initial condition belongs to an ellipsoid invariant set. Finally, continuous gain-scheduled approach is employed to design continuous nonline…

Nonlinear systemH-infinity methods in control theoryObserver (quantum physics)Stochastic modellingLinearizationControl theoryLinear systemInitial value problemRobust controlMathematics2012 American Control Conference (ACC)
researchProduct

The ends of manifolds with bounded geometry, linear growth and finite filling area

2002

We prove that simply connected open Riemannian manifolds of bounded geometry, linear growth and sublinear filling growth (e.g. finite filling area) are simply connected at infinity.

Mathematics - Differential GeometrySublinear functionHyperbolic geometryGeometryGeometric Topology (math.GT)Algebraic geometryCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMathematics - Geometric Topology53 C 23 57 N 15Differential geometryDifferential Geometry (math.DG)Bounded functionSimply connected spaceFOS: MathematicsCondensed Matter::Strongly Correlated ElectronsGeometry and TopologyMathematics::Differential GeometrySimply connected at infinityMathematicsProjective geometry
researchProduct

On nonimmersibility of compact hypersurfaces into a ball of a simply connected space form

1996

We give a nonimmersibility theorem of a compact manifold with nonnegative scalar curvature bounded from above into a geodesic ball of a simply connected space form.

General MathematicsHyperbolic spaceMathematical analysisSimply connected spaceMathematics::Differential GeometrySectional curvatureBall (mathematics)CurvatureRicci curvatureSimply connected at infinityMathematicsScalar curvatureIsrael Journal of Mathematics
researchProduct

Numerical study of blow-up and stability of line solitons for the Novikov-Veselov equation

2017

International audience; We study numerically the evolution of perturbed Korteweg-de Vries solitons and of well localized initial data by the Novikov-Veselov (NV) equation at different levels of the 'energy' parameter E. We show that as |E| -> infinity, NV behaves, as expected, similarly to its formal limit, the Kadomtsev-Petviashvili equation. However at intermediate regimes, i.e. when |E| is not very large, more varied scenarios are possible, in particular, blow-ups are observed. The mechanism of the blow-up is studied.

Soliton stability[ MATH ] Mathematics [math]media_common.quotation_subjectBlow-upInverse scatteringMathematics::Analysis of PDEsNonzero energyFOS: Physical sciencesGeneral Physics and Astronomy2-dimensional schrodinger operator01 natural sciencesStability (probability)Instability010305 fluids & plasmasMathematics - Analysis of PDEs[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesFOS: MathematicsLimit (mathematics)0101 mathematics[MATH]Mathematics [math]Nonlinear Sciences::Pattern Formation and SolitonsMathematical PhysicsLine (formation)Mathematicsmedia_commonMathematical physicsNovikov–Veselov equationNonlinear Sciences - Exactly Solvable and Integrable SystemsKadomtsev-petviashvili equationsApplied Mathematics010102 general mathematics[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]InstabilityStatistical and Nonlinear PhysicsMathematical Physics (math-ph)InfinityNonlinear Sciences::Exactly Solvable and Integrable SystemsWell-posednessNovikov Veselov equationInverse scattering problemExactly Solvable and Integrable Systems (nlin.SI)Energy (signal processing)Analysis of PDEs (math.AP)
researchProduct

Zero rest-mass fields and the Newman-Penrose constants on flat space

2020

Zero rest-mass fields of spin 1 (the electromagnetic field) and spin 2 propagating on flat space and their corresponding Newman-Penrose (NP) constants are studied near spatial infinity. The aim of this analysis is to clarify the correspondence between data for these fields on a spacelike hypersurface and the value of their corresponding NP constants at future and past null infinity. To do so, Friedrich's framework of the cylinder at spatial infinity is employed to show that, expanding the initial data in terms spherical harmonics and powers of the geodesic spatial distance $\rho$ to spatial infinity, the NP constants correspond to the data for the second highest possible spherical harmonic …

High Energy Physics - TheorycylinderGeodesicField (physics)media_common.quotation_subjectFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Space (mathematics)01 natural sciencesGeneral Relativity and Quantum Cosmologyelectromagnetic field0103 physical sciencesBoundary value problem0101 mathematics[MATH]Mathematics [math]Mathematical PhysicsMathematical physicsmedia_commonPhysics010102 general mathematicsNull (mathematics)Spherical harmonicsStatistical and Nonlinear PhysicsInfinityboundary conditionHypersurfaceHigh Energy Physics - Theory (hep-th)spin: 1spin: 2010307 mathematical physicsgeodesic
researchProduct