Search results for "inner"
showing 10 items of 384 documents
Generalized John disks
2014
Abstract We establish the basic properties of the class of generalized simply connected John domains.
A cognitive architecture for inner speech
2020
Abstract A cognitive architecture for inner speech is presented. It is based on the Standard Model of Mind, integrated with modules for self-talking. Briefly, the working memory of the proposed architecture includes the phonological loop as a component which manages the exchanging information between the phonological store and the articulatory control system. The inner dialogue is modeled as a loop where the phonological store hears the inner voice produced by the hidden articulator process. A central executive module drives the whole system, and contributes to the generation of conscious thoughts by retrieving information from long-term memory. The surface form of thoughts thus emerges by …
On the automorphism group of the integral group ring of Sk wr Sn
1992
Abstract Let G = SkwrSn be the wreath product of two symmetric groups Sk and Sn. We prove that every normalized automorphism θ of the integral group ring Z G can be written in the form θ = γ ° τu, where γ is an automorphism of G and τu denotes the inner automorphism induced by a unit u in Q G.
Optimal Locations and Inner Products
1997
Abstract In a normed space X , we consider objective functions which depend on the distances between a variable point and the points of certain finite sets A . A point where such a function attains its minimum on X is generically called an optimal location. In this paper we obtain characterizations of inner product spaces with properties connecting optimal locations and the convex hull of A or barycenters of points of A with well chosen weights. We thus generalize several classical results about characterization of inner product spaces.
Characterization of chain geometries of finite dimension by their automorphism group
1990
A large class of chain geometries of finite dimension is characterized as strong chain spaces possessing a distinguished group of automorphisms fixing two distant points.
Divisible Designs Admitting, as an Automorphism Group, an Orthogonal Group or a Unitary Group
2001
We construct some divisible designs starting from a projective space. These divisible designs admit an orthogonal group or a unitary group as an automorphism group.
Injective Fitting sets in automorphism groups
1993
The Ptolemy and Zbăganu constants of normed spaces
2010
Abstract In every inner product space H the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words, ‖ x − y ‖ ‖ z − w ‖ ≤ ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ for any points w , x , y , z in H . It is known that for each normed space ( X , ‖ ⋅ ‖ ) , there exists a constant C such that for any w , x , y , z ∈ X , we have ‖ x − y ‖ ‖ z − w ‖ ≤ C ( ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ ) . The smallest such C is called the Ptolemy constant of X and is denoted by C P ( X ) . We study the relationships between this constant and the geometry of the space X , and hence with metric fix…
On permutations of class sums of alternating groups
1997
We prove a result concerning the class sums of the alternating group An; as a consequence we deduce that if θ is a normalized automorphism of the integral group ring then there exists such that is the identity on , where Sn:is the symmetric group and is the center of
Some Hadamard designs with parameters (71,35,17)
2002
Up to isomorphisms there are precisely eight symmetric designs with parameters (71, 35, 17) admitting a faithful action of a Frobenius group of order 21 in such a way that an element of order 3 fixes precisely 11 points. Five of these designs have 84 and three have 420 as the order of the full automorphism group G. If |G| = 420, then the structure of G is unique and we have G = (Frob21 × Z5):Z4. In this case Z(G) = 〈1〉, G′ has order 35, and G induces an automorphism group of order 6 of Z7. If |G| = 84, then Z(G) is of order 2, and in precisely one case a Sylow 2-subgroup is elementary abelian. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 144–149, 2002; DOI 10.1002/jcd.996