Search results for "inner"

showing 10 items of 384 documents

Generalized John disks

2014

Abstract We establish the basic properties of the class of generalized simply connected John domains.

Class (set theory)conformal mappingGeneral Mathematics30c65Conformal mapTopology30c62AlgebraNumber theorySimply connected spacehyperbolic geodesicQA1-939inner uniform domainjohn domainAlgebra over a fieldGeometry and topologyMathematicsMathematicsOpen Mathematics
researchProduct

A cognitive architecture for inner speech

2020

Abstract A cognitive architecture for inner speech is presented. It is based on the Standard Model of Mind, integrated with modules for self-talking. Briefly, the working memory of the proposed architecture includes the phonological loop as a component which manages the exchanging information between the phonological store and the articulatory control system. The inner dialogue is modeled as a loop where the phonological store hears the inner voice produced by the hidden articulator process. A central executive module drives the whole system, and contributes to the generation of conscious thoughts by retrieving information from long-term memory. The surface form of thoughts thus emerges by …

Cognitive scienceSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniComputer scienceWorking memoryCognitive Neurosciencemedia_common.quotation_subjectInner speechExperimental and Cognitive PsychologyContext (language use)Cognition02 engineering and technologyCognitive architectureCognitive architecture03 medical and health sciences0302 clinical medicineArtificial IntelligencePerception0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingBaddeley's model of working memoryEvent calculus030217 neurology & neurosurgerySoftwareHumanoid robotmedia_common
researchProduct

On the automorphism group of the integral group ring of Sk wr Sn

1992

Abstract Let G = SkwrSn be the wreath product of two symmetric groups Sk and Sn. We prove that every normalized automorphism θ of the integral group ring Z G can be written in the form θ = γ ° τu, where γ is an automorphism of G and τu denotes the inner automorphism induced by a unit u in Q G.

CombinatoricsAlgebra and Number TheoryInner automorphismHolomorphSymmetric groupMathematical analysisOuter automorphism groupAlternating groupAutomorphismUnit (ring theory)Group ringMathematicsJournal of Pure and Applied Algebra
researchProduct

Optimal Locations and Inner Products

1997

Abstract In a normed space X , we consider objective functions which depend on the distances between a variable point and the points of certain finite sets A . A point where such a function attains its minimum on X is generically called an optimal location. In this paper we obtain characterizations of inner product spaces with properties connecting optimal locations and the convex hull of A or barycenters of points of A with well chosen weights. We thus generalize several classical results about characterization of inner product spaces.

CombinatoricsConvex hullInner product spaceApplied MathematicsMathematical analysisPoint (geometry)Function (mathematics)Characterization (mathematics)Finite setAnalysisNormed vector spaceVariable (mathematics)MathematicsJournal of Mathematical Analysis and Applications
researchProduct

Characterization of chain geometries of finite dimension by their automorphism group

1990

A large class of chain geometries of finite dimension is characterized as strong chain spaces possessing a distinguished group of automorphisms fixing two distant points.

CombinatoricsInner automorphismChain (algebraic topology)HolomorphSymmetric groupSO(8)Alternating groupOuter automorphism groupGeometry and TopologyAutomorphismMathematicsGeometriae Dedicata
researchProduct

Divisible Designs Admitting, as an Automorphism Group, an Orthogonal Group or a Unitary Group

2001

We construct some divisible designs starting from a projective space. These divisible designs admit an orthogonal group or a unitary group as an automorphism group.

CombinatoricsInner automorphismProjective unitary groupUnitary groupQuaternion groupOuter automorphism groupAlternating groupGeneral linear groupMathematicsCircle group
researchProduct

Injective Fitting sets in automorphism groups

1993

CombinatoricsInner automorphismQuasisimple groupHolomorphGeneral MathematicsSO(8)Alternating groupOuter automorphism groupAutomorphismDivisible groupMathematicsArchiv der Mathematik
researchProduct

The Ptolemy and Zbăganu constants of normed spaces

2010

Abstract In every inner product space H the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words, ‖ x − y ‖ ‖ z − w ‖ ≤ ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ for any points w , x , y , z in H . It is known that for each normed space ( X , ‖ ⋅ ‖ ) , there exists a constant C such that for any w , x , y , z ∈ X , we have ‖ x − y ‖ ‖ z − w ‖ ≤ C ( ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ ) . The smallest such C is called the Ptolemy constant of X and is denoted by C P ( X ) . We study the relationships between this constant and the geometry of the space X , and hence with metric fix…

CombinatoricsInner product spaceApplied MathematicsProduct (mathematics)Mathematical analysisBanach spaceFixed-point theoremSpace (mathematics)Constant (mathematics)Fixed-point propertyAnalysisNormed vector spaceMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

On permutations of class sums of alternating groups

1997

We prove a result concerning the class sums of the alternating group An; as a consequence we deduce that if θ is a normalized automorphism of the integral group ring then there exists such that is the identity on , where Sn:is the symmetric group and is the center of

Combinatoricsp-groupAlgebra and Number TheoryInner automorphismSymmetric groupOuter automorphism groupAlternating groupPermutation groupDihedral group of order 6Covering groups of the alternating and symmetric groupsMathematicsCommunications in Algebra
researchProduct

Some Hadamard designs with parameters (71,35,17)

2002

Up to isomorphisms there are precisely eight symmetric designs with parameters (71, 35, 17) admitting a faithful action of a Frobenius group of order 21 in such a way that an element of order 3 fixes precisely 11 points. Five of these designs have 84 and three have 420 as the order of the full automorphism group G. If |G| = 420, then the structure of G is unique and we have G = (Frob21 × Z5):Z4. In this case Z(G) = 〈1〉, G′ has order 35, and G induces an automorphism group of order 6 of Z7. If |G| = 84, then Z(G) is of order 2, and in precisely one case a Sylow 2-subgroup is elementary abelian. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 144–149, 2002; DOI 10.1002/jcd.996

Combinatoricssymmetric design; Hadamard design; orbit structure; automorphism groupInner automorphismSylow theoremsStructure (category theory)Discrete Mathematics and CombinatoricsOuter automorphism groupOrder (group theory)Abelian groupElement (category theory)Frobenius groupMathematicsJournal of Combinatorial Designs
researchProduct